Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 715: 149980, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38678780

RESUMO

The transport of ceramide from the endoplasmic reticulum (ER) to the Golgi is a key step in the synthesis of complex sphingolipids, the main building blocks of the plasma membrane. In yeast, ceramide is transported to the Golgi either through ATP-dependent COPII vesicles of the secretory pathway or by ATP-independent non-vesicular transport that involves tethering proteins at ER-Golgi membrane contact sites. Studies in both mammalian and yeast cells reported that vesicular transport mainly carries ceramide containing very long chain fatty acids, while the main mammalian non-vesicular ceramide transport protein CERT only transports ceramides containing short chain fatty acids. However, if non-vesicular ceramide transport in yeast similarly favors short chain ceramides remained unanswered. Here we employed a yeast GhLag1 strain in which the endogenous ceramide synthase is replaced by the cotton-derived GhLag1 gene, resulting in the production of short chain C18 rather than C26 ceramides. We show that block of vesicular transport through ATP-depletion or the use of temperature-sensitive sec mutants caused a reduction in inositolphosphorylceramide (IPC) synthesis to similar extent in WT and GhLag1 backgrounds. Since the remaining IPC synthesis is a readout for non-vesicular ceramide transport, our results indicate that non-vesicular ceramide transport is neither blocked nor facilitated when only short chain ceramides are present. Therefore, we propose that the sorting of ceramide into non-vesicular transport is independent of acyl chain length in budding yeast.


Assuntos
Ceramidas , Complexo de Golgi , Saccharomyces cerevisiae , Ceramidas/metabolismo , Complexo de Golgi/metabolismo , Transporte Biológico , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomycetales/metabolismo , Saccharomycetales/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Retículo Endoplasmático/metabolismo , Trifosfato de Adenosina/metabolismo , Glicoesfingolipídeos
2.
Int J Mol Sci ; 23(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35008733

RESUMO

Cell division produces two viable cells of a defined size. Thus, all cells require mechanisms to measure growth and trigger cell division when sufficient growth has occurred. Previous data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals in budding yeast. However, the conservation of mechanisms that govern growth control is poorly understood. In fission yeast, ceramide synthase is encoded by two genes, Lac1 and Lag1. Here, we characterize them by using a combination of genetics, microscopy, and lipid analysis. We showed that Lac1 and Lag1 co-immunoprecipitate and co-localize at the endoplasmic reticulum. However, each protein generates different species of ceramides and complex sphingolipids. We further discovered that Lac1, but not Lag1, is specifically required for proper control of cell growth and size in Schizosaccharomyces pombe. We propose that specific ceramide and sphingolipid species produced by Lac1 are required for normal control of cell growth and size in fission yeast.


Assuntos
Oxirredutases/metabolismo , Subunidades Proteicas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/crescimento & desenvolvimento , Esfingosina N-Aciltransferase/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Sequência Conservada , Retículo Endoplasmático/metabolismo , Lipídeos/química , Modelos Biológicos , Oxirredutases/química , Subunidades Proteicas/química , Transporte Proteico , Esfingolipídeos/metabolismo
3.
FEBS Lett ; 598(5): 548-555, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395606

RESUMO

Cells sense and control the number and quality of their organelles, but the underlying mechanisms of this regulation are not understood. Our recent research in the yeast Saccharomyces cerevisiae has shown that long acyl chain ceramides in the endoplasmic reticulum (ER) membrane and the lipid moiety of glycosylphosphatidylinositol (GPI) anchor determine the sorting of GPI-anchored proteins in the ER. Here, we show that a mutant strain, which produces shorter ceramides than the wild-type strain, displays a different count of Golgi cisternae. Moreover, deletions of proteins that remodel the lipid portion of GPI anchors resulted in an abnormal number of Golgi cisternae. Thus, our study reveals that protein sorting in the ER plays a critical role in maintaining Golgi biogenesis.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Proteico , Ceramidas/metabolismo , Glicosilfosfatidilinositóis/metabolismo
4.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536872

RESUMO

Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)-plasma membrane (PM) and ER-Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus-vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Membranas Mitocondriais/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Esfingolipídeos/metabolismo , Metabolismo dos Lipídeos , Membrana Celular/metabolismo
5.
STAR Protoc ; 2(2): 100412, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33912844

RESUMO

Sphingolipid biosynthesis occurs in both the endoplasmic reticulum (ER) and the Golgi apparatus. Ceramide synthesized in the ER is transported to the Golgi and incorporated into complex sphingolipids. Here, we present a step-by-step protocol to analyze sphingolipid metabolism in budding yeast. Ceramide and inositolphosphorylceramide (IPC) are classes of sphingolipids present in yeast and are metabolically labeled with radioactive precursors. This protocol for metabolic labeling can be used to investigate ceramide transport in an in vivo environment. For complete details on the use and execution of this protocol, please refer to Ikeda et al. (2020).


Assuntos
Técnicas Citológicas/métodos , Saccharomycetales , Esfingolipídeos , Ceramidas/análise , Ceramidas/química , Ceramidas/isolamento & purificação , Ceramidas/metabolismo , Fracionamento Químico/métodos , Cromatografia em Camada Fina/métodos , Glicoesfingolipídeos/análise , Glicoesfingolipídeos/química , Glicoesfingolipídeos/isolamento & purificação , Glicoesfingolipídeos/metabolismo , Saccharomycetales/química , Saccharomycetales/metabolismo , Esfingolipídeos/análise , Esfingolipídeos/química , Esfingolipídeos/isolamento & purificação , Esfingolipídeos/metabolismo , Coloração e Rotulagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA