RESUMO
Ross River virus (RRV) belongs to the genus Alphavirus and is prevalent in Australia. RRV infection can cause arthritic symptoms in patients and may include rash, fever, arthralgia, and myalgia. Type I interferons (IFN) are the primary antiviral cytokines and trigger activation of the host innate immune system to suppress the replication of invading viruses. Alphaviruses are able to subvert the type I IFN system, but the mechanisms used are ill defined. In this study, seven RRV field strains were analyzed for induction of and sensitivity to type I IFN. The sensitivities of these strains to human IFN-ß varied significantly and were highest for the RRV 2548 strain. Compared to prototype laboratory strain RRV-T48, RRV 2548 also induced higher type I IFN levels both in vitro and in vivo and caused milder disease. To identify the determinants involved in type I IFN modulation, the region encoding the nonstructural proteins (nsPs) of RRV 2548 was sequenced, and 42 amino acid differences from RRV-T48 were identified. Using fragment swapping and site-directed mutagenesis, we discovered that substitutions E402A and R522Q in nsP1 as well as Q619R in nsP2 were responsible for increased sensitivity of RRV 2548 to type I IFN. In contrast, substitutions A31T, N219T, S580L, and Q619R in nsP2 led to induction of higher levels of type I IFN. With exception of E402A, all these variations are common for naturally occurring RRV strains. However, they are different from all known determinants of type I IFN modulation reported previously in nsPs of alphaviruses.IMPORTANCE By identifying natural Ross River virus (RRV) amino acid determinants for type I interferon (IFN) modulation, this study gives further insight into the mechanism of type I IFN modulation by alphaviruses. Here, the crucial role of type I IFN in the early stages of RRV disease pathogenesis is further demonstrated. This study also provides a comparison of the roles of different parts of the RRV nonstructural region in type I IFN modulation, highlighting the importance of nonstructural protein 1 (nsP1) and nsP2 in this process. Three substitutions in nsP1 and nsP2 were found to be independently associated with enhanced type I IFN sensitivity, and four independent substitutions in nsP2 were important in elevated type I IFN induction. Such evidence has clear implications for RRV immunobiology, persistence, and pathology. The identification of viral proteins that modulate type I IFN may also have importance for the pathogenesis of other alphaviruses.
Assuntos
Antivirais/farmacologia , Interferon Tipo I/imunologia , Interferon Tipo I/farmacologia , Ross River virus/efeitos dos fármacos , Ross River virus/imunologia , Alphavirus/genética , Alphavirus/imunologia , Infecções por Alphavirus/virologia , Animais , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Citocinas , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Ross River virus/genética , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Virulência , Replicação Viral/efeitos dos fármacosRESUMO
Ross River virus (RRV) and Barmah Forest virus (BFV) are arthritogenic arthropod-borne viruses (arboviruses) that exhibit generalist host associations and share distributions in Australia and Papua New Guinea (PNG). Using stochastic mapping and discrete-trait phylogenetic analyses, we profiled the independent evolution of RRV and BFV signature mutations. Analysis of 186 RRV and 88 BFV genomes demonstrated their viral evolution trajectories have involved repeated selection of mutations, particularly in the nonstructural protein 1 (nsP1) and envelope 3 (E3) genes suggesting convergent evolution. Convergent mutations in the nsP1 genes of RRV (residues 248 and 441) and BFV (residues 297 and 447) may be involved with catalytic enzyme mechanisms and host membrane interactions during viral RNA replication and capping. Convergent E3 mutations (RRV site 59 and BFV site 57) may be associated with enzymatic furin activity and cleavage of E3 from protein precursors assisting viral maturation and infectivity. Given their requirement to replicate in disparate insect and vertebrate hosts, convergent evolution in RRV and BFV may represent a dynamic link between their requirement to selectively 'fine-tune' intracellular host interactions and viral replicative enzymatic processes. Despite evidence of evolutionary convergence, selection pressure analyses did not reveal any RRV or BFV amino acid sites under strong positive selection and only weak positive selection for nonstructural protein sites. These findings may indicate that their alphavirus ancestors were subject to positive selection events which predisposed ongoing pervasive convergent evolution, and this largely supports continued purifying selection in RRV and BFV populations during their replication in mosquito and vertebrate hosts.
RESUMO
To determine the cause of an unprecedented outbreak of encephalitis among horses in New South Wales, Australia, in 2011, we performed genomic sequencing of viruses isolated from affected horses and mosquitoes. Results showed that most of the cases were caused by a variant West Nile virus (WNV) strain, WNV(NSW2011), that is most closely related to WNV Kunjin (WNV(KUN)), the indigenous WNV strain in Australia. Studies in mouse models for WNV pathogenesis showed that WNV(NSW2011) is substantially more neuroinvasive than the prototype WNV(KUN) strain. In WNV(NSW2011), this apparent increase in virulence over that of the prototype strain correlated with at least 2 known markers of WNV virulence that are not found in WNV(KUN). Additional studies are needed to determine the relationship of the WNV(NSW2011) strain to currently and previously circulating WNV(KUN) strains and to confirm the cause of the increased virulence of this emerging WNV strain.
Assuntos
Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/patogenicidade , Animais , Linhagem Celular , Cricetinae , Surtos de Doenças , Genes Virais , Cavalos , Camundongos , New South Wales/epidemiologia , Fases de Leitura Aberta , Filogenia , Virulência , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/imunologiaRESUMO
The family Birnaviridae are a group of non-enveloped double-stranded RNA viruses which infect poultry, aquatic animals and insects. This family includes agriculturally important pathogens of poultry and fish. Recently, next-generation sequencing technologies have identified closely related birnaviruses in Culex, Aedes and Anopheles mosquitoes. Using a broad-spectrum system based on detection of long double-stranded RNA, we have discovered and isolated a birnavirus from Aedes notoscriptus mosquitoes collected in northern New South Wales, Australia. Phylogenetic analysis of Aedes birnavirus (ABV) showed that it is related to Rotifer birnavirus, a pathogen of microscopic aquatic animals. In vitro cell infection assays revealed that while ABV can replicate in Aedes-derived cell lines, the virus does not replicate in vertebrate cells and displays only limited replication in Culex- and Anopheles-derived cells. A combination of SDS-PAGE and mass spectrometry analysis suggested that the ABV capsid precursor protein (pVP2) is larger than that of other birnaviruses and is partially resistant to trypsin digestion. Reactivity patterns of ABV-specific polyclonal and monoclonal antibodies indicate that the neutralizing epitopes of ABV are SDS sensitive. Our characterization shows that ABV displays a number of properties making it a unique member of the Birnaviridae and represents the first birnavirus to be isolated from Australian mosquitoes.
Assuntos
Aedes/virologia , Birnaviridae/classificação , Birnaviridae/isolamento & purificação , Filogenia , Rotíferos/virologia , Animais , Anopheles , Anticorpos Monoclonais , Austrália , Birnaviridae/genética , Proteínas do Capsídeo/genética , Linhagem Celular , Culex , Sequenciamento de Nucleotídeos em Larga Escala , Especificidade de Hospedeiro , New South Wales , Proteínas Virais , VírionRESUMO
The Mesoniviridae are a newly assigned family of viruses in the order Nidovirales. Unlike other nidoviruses, which include the Coronaviridae, mesoniviruses are restricted to mosquito hosts and do not infect vertebrate cells. To date there is little information on the morphological and antigenic characteristics of this new group of viruses and a dearth of mesonivirus-specific research tools. In this study we determined the genetic relationships of recent Australian isolates of Alphamesonivirus 4 (Casuarina virus-CASV) and Alphamesonivirus 1 (Nam Dinh virus-NDiV), obtained from multiple mosquito species. Australian isolates of NDiV showed high-level similarity to the prototype NDiV isolate from Vietnam (99% nucleotide (nt) and amino acid (aa) identity). Isolates of CASV from Central Queensland were genetically very similar to the prototype virus from Darwin (95-96% nt and 91-92% aa identity). Electron microscopy studies demonstrated that virion diameter (≈80 nm) and spike length (≈10 nm) were similar for both viruses. Monoclonal antibodies specific to CASV and NDiV revealed a close antigenic relationship between the two viruses with 13/34 mAbs recognising both viruses. We also detected NDiV RNA on honey-soaked nucleic acid preservation cards fed on by wild mosquitoes supporting a possible mechanism of horizontal transmission between insects in nature.
Assuntos
Antígenos Virais/imunologia , Culicidae/virologia , Transmissão de Doença Infecciosa , Nidovirales/genética , Nidovirales/imunologia , Animais , Austrália , Nidovirales/classificação , Filogenia , Análise de Sequência de DNA , Vietnã , VírionRESUMO
There are many gaps to be filled in our understanding of mosquito-borne viruses, their relationships with vectors and reservoir hosts, and the environmental drivers of seasonal activity. Stratford virus (STRV) belongs to the genus Flavivirus and has been isolated from mosquitoes and infected humans in Australia but little is known of its vector and reservoir host associations. A total of 43 isolates of STRV from mosquitoes collected in New South Wales between 1995 and 2013 was examined to determine the genetic diversity between virus isolates and their relationship with mosquito species. The virus was isolated from six mosquito species; Aedes aculeatus, Aedes alternans, Aedes notoscriptus, Aedes procax, Aedes vigilax, and Anopheles annulipes. While there were distinct differences in temporal and spatial activity of STRV, with peaks of activity in 2006, 2010 and 2013, a sequence homology of 95.9%-98.4% was found between isolates and the 1961 STRV prototype with 96.2%-100% identified among isolates. Temporal differences but no apparent nucleotide divergence by mosquito species or geographic location was evident. The result suggests the virus is geographically widespread in NSW (albeit only from coastal regions) and increased local STRV activity is likely to be driven by reservoir host factors and local environmental conditions influencing vector abundance. While STRV may not currently be associated with major outbreaks of human disease, with the potential for urbanisation and climate change to increase mosquito-borne disease risks, and the possibility of genomic changes which could produce pathogenic strains, understanding the drivers of STRV activity may assist the development of strategic response to public health risks posed by zoonotic flaviviruses in Australia.
Assuntos
Aedes/virologia , Mosquitos Vetores/virologia , Estações do Ano , Animais , Humanos , FilogeniaRESUMO
Viral metagenomics characterizes known and identifies unknown viruses based on sequence similarities to any previously sequenced viral genomes. A metagenomics approach was used to identify virus sequences in Australian mosquitoes causing cytopathic effects in inoculated mammalian cell cultures. Sequence comparisons revealed strains of Liao Ning virus (Reovirus, Seadornavirus), previously detected only in China, livestock-infecting Stretch Lagoon virus (Reovirus, Orbivirus), two novel dimarhabdoviruses, named Beaumont and North Creek viruses, and two novel orthobunyaviruses, named Murrumbidgee and Salt Ash viruses. The novel virus proteomes diverged by ≥ 50% relative to their closest previously genetically characterized viral relatives. Deep sequencing also generated genomes of Warrego and Wallal viruses, orbiviruses linked to kangaroo blindness, whose genomes had not been fully characterized. This study highlights viral metagenomics in concert with traditional arbovirus surveillance to characterize known and new arboviruses in field-collected mosquitoes. Follow-up epidemiological studies are required to determine whether the novel viruses infect humans.
Assuntos
Infecções por Bunyaviridae/virologia , Culicidae/virologia , Insetos Vetores/virologia , Orthobunyavirus/isolamento & purificação , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/isolamento & purificação , Animais , Austrália/epidemiologia , Infecções por Bunyaviridae/epidemiologia , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Dados de Sequência Molecular , Orthobunyavirus/classificação , Orthobunyavirus/genética , Filogenia , Rhabdoviridae/classificação , Rhabdoviridae/genética , Infecções por Rhabdoviridae/epidemiologia , Vigilância de Evento SentinelaRESUMO
In 2002, Tasmania reported the largest number of Ross River virus (RRV) infections ever recorded for the state. Of the 117 cases, 37 lived in, or had visited, the Sorell Municipal Area, east of Hobart. In early 2002, a combination of spring tides and high summer rainfall produced extensive salt marsh habitat in the Sorell region, resulting in unseasonably high densities of the mosquito Ochlerotatus camptorhynchus, recognised vector of RRV. Four isolates of RRV were identified from collections of adult mosquitoes. All four isolates were from Oc. camptorhynchus, collected near the Carlton River. This is the furthest south that RRV has been identified in Australia and the first identification from south-east Tasmania. The virus carriage rate in the mosquito vector populations were very high, with successive weekly minimum infection rates of 17.1, 3.0 and 11.1 per 1,000 Oc. camptorhynchus at Carlton River from mid-February to early March. The first isolation of RRV from mosquitoes coincided with the onset dates of the first human cases of RRV infection.