Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Bone Miner Metab ; 41(2): 193-202, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36520195

RESUMO

INTRODUCTION: Paget's disease of bone (PDB) is a skeletal disorder characterized by disorganized bone remodeling due to abnormal osteoclasts. Tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) gene encodes the receptor activator of nuclear factor kappa B (RANK), which has a critical role in osteoclast function. There are five types of rare PDB and related osteolytic disorders due to TNFRSF11A tandem duplication variants so far, including familial expansile osteolysis (84dup18), expansile skeletal hyperphosphatasia (84dup15), early-onset familial PDB (77dup27), juvenile PDB (87dup15), and panostotic expansile bone disease (90dup12). MATERIALS AND METHODS: We reviewed a Japanese family with PDB, and performed whole-genome sequencing to identify a causative variant. RESULTS: This family had bone symptoms, hyperphosphatasia, hearing loss, tooth loss, and ocular manifestations such as angioid streaks or early-onset glaucoma. We identified a novel duplication variant of TNFRSF11A (72dup27). Angioid streaks were recognized in Juvenile Paget's disease due to loss-of-function variants in the gene TNFRSF11B, and thought to be specific for this disease. However, the novel recognition of angioid streaks in our family raised the possibility of occurrence even in bone disorders due to TNFRSF11A duplication variants and the association of RANKL-RANK signal pathway as the pathogenesis. Glaucoma has conversely not been reported in any case of Paget's disease. It is not certain whether glaucoma is coincidental or specific for PDB with 72dup27. CONCLUSION: Our new findings might suggest a broad spectrum of phenotypes in bone disorders with TNFRSF11A duplication variants.


Assuntos
Estrias Angioides , Glaucoma , Osteíte Deformante , Humanos , Receptor Ativador de Fator Nuclear kappa-B/genética , Osteíte Deformante/genética
2.
Artif Organs ; 46(4): 653-665, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34932228

RESUMO

BACKGROUND: Artificial placenta therapy (APT) is an experimental care strategy for extremely preterm infants born at 21-24 weeks' gestation. In our previous studies, blood taken from the maternal ewe was used as the basis of priming solutions for the artificial placenta circuit. However, the use of maternal blood as a priming solution is accompanied by several challenges. We explored the use of synthetic red cells (hemoglobin vesicles; HbV) as the basis of a priming solution for APT used to manage extremely early preterm ovine fetuses. METHODS: Six ewes with singleton pregnancies at 95 d gestation (term = 150 d) were adapted to APT and maintained with constant monitoring of key vital parameters. The target maintenance period was 72 h in duration. A synthetic red cell solution consisting of HbV, sheep albumin and electrolytes was used as priming solutions for the APT circuit. Fetuses were evaluated on gross appearance, physiological parameters and bleeding after euthanasia. RESULTS: Two out of six APT fetuses were successfully maintained for the targeted 72 h experimental period with controllable anemia (>10 g/dl) and methemoglobinemia (<10%) using an infusion of blood transfusion and nitroglycerin delivered >1 h after APT commencement, a sufficient period of time to cross-match blood products and screen for viral agents of concern. CONCLUSIONS: Extremely preterm sheep fetuses were maintained for a period of up to 72 h using APT in combination with circuit priming using a synthetic red cell (HbV) preparation. Although significant further refinements are required, these findings demonstrated the potential clinical utility of synthetic blood products in the eventual clinical translation of artificial placenta technology to support extremely preterm infants.


Assuntos
Lactente Extremamente Prematuro , Placenta , Animais , Terapia Baseada em Transplante de Células e Tecidos , Feminino , Feto/fisiologia , Idade Gestacional , Humanos , Recém-Nascido , Gravidez , Ovinos
3.
Am J Obstet Gynecol ; 223(5): 755.e1-755.e20, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32380175

RESUMO

BACKGROUND: Ex vivo uterine environment therapy is an experimental intensive care strategy for extremely preterm infants born between 21 and 24 weeks of gestation. Gas exchange is performed by membranous oxygenators connected by catheters to the umbilical vessels. The fetus is submerged in a bath of synthetic amniotic fluid. The lungs remain fluid filled, and pulmonary respiration does not occur. Intrauterine inflammation is strongly associated with extremely preterm birth and fetal injury. At present, there are no data that we are aware of to show that artificial placenta-based systems can be used to support extremely preterm fetuses compromised by exposure to intrauterine inflammation. OBJECTIVE: To evaluate the ability of our ex vivo uterine environment therapy platform to support extremely preterm ovine fetuses (95-day gestational age; approximately equivalent to 24 weeks of human gestation) exposed to intrauterine inflammation for a period of 120 hours, the following primary endpoints were chosen: (1) maintenance of key physiological variables within normal ranges, (2) absence of infection and inflammation, (3) absence of brain injury, and (4) gross fetal growth and cardiovascular function matching that of age-matched in utero controls. STUDY DESIGN: Ten ewes with singleton pregnancies were each given a single intraamniotic injection of 10-mg Escherichia coli lipopolysaccharides under ultrasound guidance 48 hours before undergoing surgical delivery for adaptation to ex vivo uterine environment therapy at 95-day gestation (term=150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with constant monitoring of key vital parameters (ex vivo uterine environment group) before being killed at 100-day equivalent gestational age. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, biochemical parameters, inflammatory markers, and microbial load to exclude infection. Ultrasound was conducted at 48 hours after intraamniotic lipopolysaccharides (before surgery) to confirm fetal viability and at the conclusion of the experiments (before euthanasia) to evaluate cardiac function. Brain injury was evaluated by gross anatomic and histopathologic investigations. Eight singleton pregnant control animals were similarly exposed to intraamniotic lipopolysaccharides at 93-day gestation and were killed at 100-day gestation to allow comparative postmortem analyses (control group). Biobanked samples from age-matched saline-treated animals served as an additional comparison group. Successful instillation of lipopolysaccharides into the amniotic fluid exposure was confirmed by amniotic fluid analysis at the time of administration and by analyzing cytokine levels in fetal plasma and amniotic fluid. Data were tested for mean differences using analysis of variance. RESULTS: Six of 8 lipopolysaccharide control group (75%) and 8 of 10 ex vivo uterine environment group fetuses (80%) successfully completed their protocols. Six of 8 ex vivo uterine environment group fetuses required dexamethasone phosphate treatment to manage profound refractory hypotension. Weight and crown-rump length were reduced in ex vivo uterine environment group fetuses at euthanasia than those in lipopolysaccharide control group fetuses (P<.05). There were no biologically significant differences in cardiac ultrasound measurement, differential leukocyte counts (P>.05), plasma tumor necrosis factor α, monocyte chemoattractant protein-1 concentrations (P>.05), or liver function tests between groups. Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment group animals. No cases of intraventricular hemorrhage were observed. White matter injury was identified in 3 of 6 lipopolysaccharide control group fetuses and 3 of 8 vivo uterine environment group fetuses. CONCLUSION: We report the use of an artificial placenta-based system to support extremely preterm lambs compromised by exposure to intrauterine inflammation. Our data highlight key challenges (refractory hypotension, growth restriction, and white matter injury) to be overcome in the development and use of artificial placenta technology for extremely preterm infants. As such challenges seem largely absent from studies based on healthy pregnancies, additional experiments of this nature using clinically relevant model systems are essential for further development of this technology and its eventual clinical application.


Assuntos
Órgãos Artificiais , Hemorragia Cerebral Intraventricular/patologia , Citocinas/imunologia , Desenvolvimento Fetal , Feto/imunologia , Inflamação/imunologia , Leucomalácia Periventricular/patologia , Cuidados para Prolongar a Vida/métodos , Placenta , Âmnio , Líquido Amniótico/imunologia , Animais , Gasometria , Quimiocina CCL2/imunologia , Estatura Cabeça-Cóccix , Modelos Animais de Doenças , Feminino , Feto/patologia , Idade Gestacional , Humanos , Lactente Extremamente Prematuro , Recém-Nascido , Inflamação/induzido quimicamente , Inflamação/patologia , Injeções , Contagem de Leucócitos , Lipopolissacarídeos/toxicidade , Gravidez , Ovinos , Carneiro Doméstico , Fator de Necrose Tumoral alfa/imunologia , Artérias Umbilicais
4.
Am J Obstet Gynecol ; 222(2): 183.e1-183.e9, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31494126

RESUMO

BACKGROUND: Antenatal corticosteroids (ACS) are the standard of care for maturing the fetal lung and improving outcomes for preterm infants. Antenatal corticosteroid dosing remains nonoptimized, and there is little understanding of how different treatment-to-delivery intervals may affect treatment efficacy. The durability of a lung maturational response is important because the majority of women treated with antenatal corticosteroids do not deliver within the widely accepted 1- to 7-day window of treatment efficacy. OBJECTIVE: We used a sheep model to test the duration of fetal exposures for efficacy at delivery intervals from 1 to 10 days. MATERIALS AND METHODS: For infusion studies, ewes with single fetuses were randomized to receive an intravenous bolus and maintenance infusion of betamethasone phosphate to target 1-4 ng/mL fetal plasma betamethasone for 36 hours, with delivery at 2, 4 ,or 7 days posttreatment or sterile saline solution as control. Animals receiving the clinical treatment were randomised to receive either a single injection of 0.25 mg/kg with a 1:1 mixture of betamethasone phosphate + betamethasone acetate with delivery at either 1 or 7 days posttreatment, or 2 treatments of 0.25 mg/kg betamethasone phosphate + betamethasone acetate spaced at 24 hours (giving ∼48 hours of fetal steroid exposure) with delivery at 2, 5, 7, or 10 days posttreatment. Negative control animals were treated with saline solution. All lambs were delivered at 121 ± 3 days gestational age and ventilated for 30 minutes to assess lung function. RESULTS: Preterm lambs delivered at 1 or 2 days post-antenatal corticosteroid treatment had significant improvements in lung maturation for both intravenous and single-dose intramuscular treatments. After 2 days, the efficacy of 36-hour betamethasone phosphate infusions was lost. The single dose of 1:1 betamethasone phosphate + betamethasone acetate also was ineffective at 7 days. In contrast, animals treated with 2 doses had significant improvements in lung maturation at 2, 5, and 7 days, with treatment efficacy reduced by 10 days. CONCLUSION: In preterm lambs, the durability of antenatal corticosteroids treatment depends on the duration of fetal exposure and is independent of the intravenous or intramuscular maternal route of administration. For acute 24- to 48-hour posttreatment deliveries, a 24-hour fetal antenatal corticosteroids exposure was sufficient for lung maturation. A fetal exposure duration of at least 48 hours was necessary to maintain long-term treatment durability. A single-dose ACS treatment should be sufficient for women delivering within <48 hours of antenatal corticosteroids treatment.


Assuntos
Betametasona/análogos & derivados , Parto Obstétrico , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Feto/efeitos dos fármacos , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Animais , Betametasona/farmacologia , Idade Gestacional , Infusões Intravenosas , Injeções Intramusculares , Pulmão/embriologia , Cuidado Pré-Natal , Ovinos , Fatores de Tempo
5.
Am J Obstet Gynecol ; 223(6): 921.e1-921.e10, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32445634

RESUMO

BACKGROUND: Administration of antenatal steroids is standard of care for women assessed to be at imminent risk of preterm delivery. There is a marked variation in antenatal steroid dosing strategy, selection for treatment criteria, and agent choice worldwide. This, combined with very limited optimization of antenatal steroid use per se, means that treatment efficacy is highly variable, and the rate of respiratory distress syndrome is decreased to perhaps as low as 40%. In some cases, antenatal steroid use is associated with limited benefit and potential harm. OBJECTIVE: We hypothesized that individual differences in maternofetal steroid exposure would contribute to observed variability in antenatal steroid treatment efficacy. Using a chronically catheterized sheep model of pregnancy, we aimed to explore the relationship between maternofetal steroid exposure and antenatal steroid treatment efficacy as determined by functional lung maturation in preterm lambs undergoing ventilation. STUDY DESIGN: Ewes carrying a single fetus underwent surgery to catheterize a fetal and maternal jugular vein at 119 days' gestation. Animals recovered for 24 hours before being randomized to either (1) a single maternal intramuscular injection of 2 mL saline (negative control group, n=10) or (2) a single maternal intramuscular injection of 0.25 mg/kg betamethasone phosphate plus acetate (antenatal steroid group, n=20). Serial maternal and fetal plasma samples were collected from each animal after 48 hours before fetuses were delivered and ventilated for 30 minutes. Total and free plasma betamethasone concentration was measured by mass spectrometry. Fetal lung tissue was collected for analysis using quantitative polymerase chain reaction. RESULTS: One animal from the control group and one animal from the antenatal steroid group did not complete their treatment protocol and were removed from analyses. Animals in the antenatal steroid group were divided into a responder subgroup (n=12/19) and a nonresponder subgroup (n=7/19) using a cutoff of partial pressure of arterial CO2 at 30-minute ventilation within 2 standard deviations of the mean value from saline-treated negative control group animals. Although antenatal steroid improved fetal lung maturation in the undivided antenatal steroid group and in the responder subgroup both physiologically (blood gas- and ventilation-related data) and biochemically (messenger ribonucleic acid expression related to fetal lung maturation), these values did not improve relative to saline-treated control group animals in the antenatal steroid nonresponder subgroup. No differences in betamethasone distribution, clearance, or protein binding were identified between the antenatal steroid responder and nonresponder subgroups. CONCLUSION: This study correlated individual maternofetal steroid exposures with preterm lung maturation as determined by pulmonary ventilation. Herein, approximately 40% of preterm lambs exposed to antenatal steroids had lung maturation that was not significantly different to saline-treated control group animals. These nonresponsive animals received maternal and fetal betamethasone exposures identical to animals that had a significant improvement in functional lung maturation. These data suggest that the efficacy of antenatal steroid therapy is not solely determined by maternofetal drug levels and that individual fetal or maternal factors may play a role in determining treatment outcomes in response to glucocorticoid signaling.


Assuntos
Betametasona/análogos & derivados , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Animais , Aquaporina 1/efeitos dos fármacos , Aquaporina 1/genética , Aquaporina 5/efeitos dos fármacos , Aquaporina 5/genética , Betametasona/sangue , Betametasona/farmacologia , Gasometria , Dióxido de Carbono , Canais Epiteliais de Sódio/efeitos dos fármacos , Canais Epiteliais de Sódio/genética , Feminino , Maturidade dos Órgãos Fetais/genética , Glucocorticoides/sangue , Pulmão/metabolismo , Pulmão/fisiopatologia , Complacência Pulmonar/efeitos dos fármacos , Espectrometria de Massas , Troca Materno-Fetal , Pressão Parcial , Assistência Perinatal , Reação em Cadeia da Polimerase , Gravidez , Nascimento Prematuro , Cuidado Pré-Natal , Proteína A Associada a Surfactante Pulmonar/efeitos dos fármacos , Proteína A Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/efeitos dos fármacos , Proteína B Associada a Surfactante Pulmonar/genética , Proteína C Associada a Surfactante Pulmonar/efeitos dos fármacos , Proteína C Associada a Surfactante Pulmonar/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Respiração Artificial , Ovinos
6.
Clin Exp Nephrol ; 24(6): 547-556, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32162117

RESUMO

BACKGROUND: Studies among pregnant Asian women with chronic kidney disease (CKD) have not been widely performed; therefore, clinical criteria for these patients have not been well established. METHODS: We conducted a retrospective study among pregnant women with CKD who received prenatal care at our institution for 8 consecutive years. Primary outcome was the development of severe adverse events (SAEs). We analyzed correlations between primary outcome and CKD parameters [age, body mass index (BMI), estimated glomerular filtration rate (eGFR), urinary protein-creatinine ratio (UP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and not normal blood pressure (non-NBP)] at the time of referral. Secondary outcomes were low birth weight (LBW), preterm delivery (PreD), and small for gestational age (SGA). We divided into two categories, CKD stage G1, and G2 or higher according to eGFR, and proteinuria negative and proteinuria positive according to UP, respectively. RESULTS: We observed 89 pregnancies. SAE was observed in 28 pregnancies. In live birth cases, there were 28 PreD, 28 LBW and 13 SGA. Major SAEs included preeclampsia, superimposed preeclampsia, unscheduled cesarean section, neonatal intensive care unit admission, and fetal death. Stepwise logistic regression analysis selected eGFR (OR = 0.847, p = 0.026), SBP (OR = 1.897, p = 0.006) and proteinuria positive (OR = 2.96, p = 0.046) as the significant predictors of SAEs. There were no significant differences among the baseline characteristics stratified by SGA. CONCLUSIONS: This is the first study to report pregnancy outcomes among Japanese non-disease-oriented patients with CKD. In Asians, especially in the Japanese population, kidney function, blood pressure and proteinuria might affect pregnancy outcomes.


Assuntos
Pressão Sanguínea , Nascimento Prematuro/epidemiologia , Proteinúria/etiologia , Insuficiência Renal Crônica/fisiopatologia , Adulto , Povo Asiático , Índice de Massa Corporal , Cesárea , Diástole , Feminino , Taxa de Filtração Glomerular , Humanos , Recém-Nascido de Baixo Peso , Recém-Nascido , Recém-Nascido Pequeno para a Idade Gestacional , Japão/epidemiologia , Nascido Vivo/epidemiologia , Idade Materna , Pré-Eclâmpsia/epidemiologia , Gravidez , Insuficiência Renal Crônica/complicações , Estudos Retrospectivos , Fatores de Risco , Sístole
7.
Pediatr Int ; 62(6): 688-693, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31916650

RESUMO

BACKGROUND: Arginine vasopressin (AVP) infusion has been shown to be a useful strategy for the management of systemic perfusion failure in premature infants. Our objective was to determine the characteristics of the blood flow redistribution induced by AVP infusion in premature fetal sheep. METHODS: Nine sheep fetuses at 99 to 113 days of gestation were continuously infused with AVP. Measurement of blood flow to individual fetal organs was performed using a colored microsphere technique, with measurements performed at 30 min before and 90 min after the initiation of AVP infusions. RESULTS: The AVP infusion significantly increased blood flow to the medulla oblongata (P < 0.05), and significantly decreased flow to the adrenal glands (from 492.0 ± 239.6 to 364.9 ± 143.3 mL/min/100 g, P < 0.05) and heart (from 592.6 ± 184.5 to 435.6 ± 137.4 mL/min/100 g, P < 0.05). The infusion significantly increased the vascular resistance in adrenal glands, kidneys, ileum, colon, heart, and cerebellum. In the brain, except for the cerebellum, no significant increase in resistance was identified. CONCLUSIONS: There was no significant response to AVP infusion in cerebral blood flow in mid-gestation fetal sheep. Our observations suggest that, under AVP stimulation, the blood flow to the adrenal glands and myocardium might be decreased due to an increase in vascular resistance.


Assuntos
Arginina Vasopressina/farmacologia , Feto/efeitos dos fármacos , Hemostáticos/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Glândulas Suprarrenais/irrigação sanguínea , Glândulas Suprarrenais/efeitos dos fármacos , Animais , Vasos Coronários/efeitos dos fármacos , Feminino , Sangue Fetal/efeitos dos fármacos , Bulbo/irrigação sanguínea , Bulbo/efeitos dos fármacos , Gravidez , Ovinos , Resistência Vascular/efeitos dos fármacos
8.
Am J Obstet Gynecol ; 221(1): 69.e1-69.e17, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30853365

RESUMO

BACKGROUND: Ex vivo uterine environment therapy is an experimental life support platform designed to reduce the risk of morbidity and mortality for extremely preterm infants born at the border of viability (21-24 weeks' gestation). To spare the functionally immature lung, this platform performs gas exchange via a membranous oxygenator connected to the umbilical vessels, and the fetus is submerged in a protective bath of artificial amniotic fluid. We and others have demonstrated the feasibility of extended survival with ex vivo uterine environment therapy therapy in late preterm fetuses; however, there is presently no evidence to show that the use of such a platform can support extremely preterm fetuses, the eventual translational target for therapy of this nature. OBJECTIVE: The objective of the study was to use our ex vivo uterine environment therapy platform to support the healthy maintenance of 600-700 g/95 days gestational age (equivalent to 24 weeks of human gestation) sheep fetuses. Primary outcome measures were as follows: (1) maintenance of key physiological variables; (2) absence of infection; (3) absence of brain injury; and (4) growth and cardiovascular function patterns matching that of noninstrumented, age-matched in utero controls. STUDY DESIGN: Singleton fetuses from 8 ewes underwent surgical delivery at 95 days' gestation (term, 150 days). Fetuses were adapted to ex vivo uterine environment therapy and maintained for 120 hours with real-time monitoring of key physiological variables. Umbilical artery blood samples were regularly collected to assess blood gas data, differential counts, inflammation, and microbial load to exclude infection. Brain injury was evaluated by gross anatomical and histopathological approaches after euthanasia. Nine pregnant control animals were euthanized at 100 days' gestation to allow comparative postmortem analyses. Data were tested for mean differences with an analysis of variance. RESULTS: Seven of 8 ex vivo uterine environment group fetuses (87.5%) completed 120 hours of therapy with key parameters maintained in a normal physiological range. There were no significant intergroup differences (P > .05) in final weight, crown-rump length, and body weight-normalized lung and brain weights at euthanasia compared with controls. There were no biologically significant differences in hematological parameters (total or differential leucocyte counts and plasma concentration of tumor necrosis factor-α and monocyte chemoattractant protein 1) (P > .05). Daily blood cultures were negative for aerobic and anaerobic growth in all ex vivo uterine environment animals. There was no difference in airspace consolidation between control and ex vivo uterine environment animals, and there was no increase in the number of lung cells staining positive for the T-cell marker CD3. There were no increases in interleukin-1, interleukin-6, interleukin-8, tumor necrosis factor-α, and monocyte chemoattractant protein 1 mRNA expression in lung tissues compared with the control group. No cases of intraventricular hemorrhage were observed, and white matter injury was identified in only 1 ex vivo uterine environment fetus. CONCLUSION: For several decades, there has been little improvement in outcomes of extremely preterm infants born at the border of viability. In the present study, we report the use of artificial placenta technology to support, for the first time, extremely preterm ovine fetuses (equivalent to 24 weeks of human gestation) in a stable, growth-normal state for 120 hours. With additional refinement, the data generated by this study may inform a treatment option to improve outcomes for extremely preterm infants.


Assuntos
Órgãos Artificiais , Citocinas/genética , Desenvolvimento Fetal , Placenta , Nascimento Prematuro , Animais , Hemocultura , Gasometria , Encéfalo/crescimento & desenvolvimento , Quimiocina CCL2 , Contagem de Colônia Microbiana , Estatura Cabeça-Cóccix , Citocinas/metabolismo , Feminino , Viabilidade Fetal , Peso Fetal , Idade Gestacional , Infecções/epidemiologia , Inflamação/epidemiologia , Inflamação/genética , Inflamação/metabolismo , Contagem de Leucócitos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Tamanho do Órgão , Gravidez , RNA Mensageiro/metabolismo , Ovinos , Carneiro Doméstico , Fator de Necrose Tumoral alfa , Artérias Umbilicais
9.
Am J Obstet Gynecol ; 219(3): 301.e1-301.e16, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29758177

RESUMO

BACKGROUND: Antenatal corticosteroids are among the most important and widely used interventions to improve outcomes for preterm infants. Antenatal corticosteroid dosing regimens remain unoptimized and without maternal weight-adjusted dosing. We, and others, have hypothesized that, once a low concentration of maternofetal steroid exposure is achieved and maintained, the duration of the steroid exposure determines treatment efficacy. Using a sheep model of pregnancy, we tested the relationship among steroid dose, duration of exposure, and treatment efficacy. OBJECTIVE: The study was conducted to investigate the relative importance of duration and magnitude of fetal corticosteroid exposure to mature the preterm fetal ovine lung. STUDY DESIGN: Ewes with single fetuses at 120 days gestation received an intravenous bolus (loading dose) followed by a maintenance infusion of betamethasone phosphate to target 12-hour fetal plasma betamethasone concentrations of (1) 20 ng/mL, (2) 10 ng/mL, or (3) 2 ng/mL. In a subsequent experiment, fetal plasma betamethasone concentrations were targeted at 2 ng/mL for 26 hours. Negative control animals received sterile saline solution. Positive control animals received 2 intramuscular injections of 0.25 mg/kg Celestone Chronodose (betamethasone phosphate + betamethasone acetate) spaced at 24 hours. Preterm lambs were delivered surgically and ventilated 48 hours after treatment commenced. Maternal and fetal plasma betamethasone concentrations were confirmed by mass spectrometry in a parallel study of chronically catheterized, corticosteroid-treated ewes and fetuses. RESULTS: The loading and maintenance doses were achieved and maintained the desired fetal plasma betamethasone concentrations of approximately 20, 10, and 2 ng/mL for 12 hours. Compared with the 12-hour infusion-treated animals, lambs from the positive control (2 intramuscular doses of 0.25 mg/kg Celestone Chronodose) group had the greatest functional lung maturation (compliance, gas exchange, arterial pH) and molecular evidence of maturation (glucocorticoid receptor signaling activation), despite having maximum fetal plasma betamethasone concentrations 2.5 times lower than animals in the 20 ng/mL betamethasone infusion group. Lambs from the 12-hour 2-ng/mL betamethasone infusion group had little functional lung maturation. In contrast, lambs from the 26-hour 2-ng/mL betamethasone infusion group had functional lung maturation equivalent to lambs from the positive control group. CONCLUSION: In preterm lambs that were exposed to antenatal corticosteroids, high maternofetal plasma betamethasone concentrations did not correlate with improved lung maturation. The largest and most consistent improvements in lung maturation were in animals that were exposed to either the clinical course of Celestone Chronodose or a low-dose betamethasone phosphate infusion to achieve a fetal plasma betamethasone concentration of approximately 2 ng/mL for 26 hours. The duration of low-concentration maternofetal steroid exposure, not total dose or peak drug exposure, is a key determinant for antenatal corticosteroids efficacy. These findings underscore the need to develop an optimized steroid dosing regimen that may improve both the efficacy and safety of antenatal corticosteroids therapy.


Assuntos
Betametasona/análogos & derivados , Maturidade dos Órgãos Fetais/efeitos dos fármacos , Glucocorticoides/farmacologia , Pulmão/efeitos dos fármacos , Corticosteroides/administração & dosagem , Corticosteroides/farmacologia , Animais , Betametasona/administração & dosagem , Betametasona/sangue , Betametasona/farmacologia , Relação Dose-Resposta a Droga , Feminino , Glucocorticoides/administração & dosagem , Glucocorticoides/sangue , Pulmão/embriologia , Gravidez , Nascimento Prematuro , Cuidado Pré-Natal , Respiração Artificial , Ovinos , Fatores de Tempo
10.
Am J Obstet Gynecol ; 217(4): 457.e1-457.e13, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28646647

RESUMO

BACKGROUND: Extremely preterm infants born at the border of viability (22-24 weeks' gestation) have high rates of death and lasting disability. Ex vivo uterine environment therapy is an experimental neonatal intensive care strategy that provides gas exchange using parallel membranous oxygenators connected to the umbilical vessels, sparing the extremely preterm cardiopulmonary system from ventilation-derived injury. OBJECTIVE: In this study, we aimed to refine our ex vivo uterine environment therapy platform to eliminate fetal infection and inflammation, while simultaneously extending the duration of hemodynamically stable ex vivo uterine environment therapy to 1 week. STUDY DESIGN: Merino-cross ewes with timed, singleton pregnancies were surgically delivered at 112-115 days of gestation (term is ∼150 days) and adapted to ex vivo uterine environment therapy (treatment group; n = 6). Physiological variables were continuously monitored; humerus and femur length, ductus arteriosus directional flow, and patency were estimated with ultrasound; serial blood samples were collected for hematology and microbiology studies; weight was recorded at the end of the experiment. Control group animals (n = 7) were euthanized at 122 days of gestation and analyzed accordingly. Bacteremia was defined by positive blood culture. Infection and fetal inflammation was assessed with white blood cell counts (including differential leukocyte counts), plasma and lung proinflammatory cytokine measurements, and lung histopathology. RESULTS: Five of 6 fetuses in the treatment group completed the 1-week study period with key physiological parameters, blood counts remaining within normal ranges, and no bacteremia detected. There were no significant differences (P > .05) in arterial blood oxygen content or lactate levels between ex vivo uterine environment therapy and control groups at delivery. There was no significant difference (P > .05) in birthweight between control and ex vivo uterine environment groups. In the ex vivo uterine environment group, we observed growth of fetal humerus (P < .05) and femur (P < .001) over the course of the 7-day experimental period. There was no difference in airway or airspace morphology or consolidation between control and ex vivo uterine environment animals, and there was no increase in the number of lung cells staining positive for T-cell marker CD3+. CONCLUSION: Five preterm lambs were maintained in a physiologically stable condition for 1 week with significant growth and without clinically significant bacteremia or systemic inflammation. Although substantial further refinement is required, a life support platform based around ex vivo uterine environment therapy may provide an avenue to improve outcomes for extremely preterm infants.


Assuntos
Órgãos Artificiais , Placenta , Nascimento Prematuro/terapia , Animais , Animais Recém-Nascidos , Complexo CD3/metabolismo , Cuidados Críticos/métodos , Citocinas/genética , Citocinas/metabolismo , Feminino , Fêmur/diagnóstico por imagem , Fêmur/crescimento & desenvolvimento , Úmero/diagnóstico por imagem , Úmero/crescimento & desenvolvimento , Ácido Láctico/sangue , Pulmão/metabolismo , Modelos Animais , Oxigênio/sangue , Gravidez , RNA Mensageiro/metabolismo , Ovinos
11.
Pediatr Res ; 79(1-1): 13-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26372515

RESUMO

BACKGROUND: Male preterm infants are more likely to experience respiratory distress syndrome than females. Our objectives were to determine if sex-related differences in physiological adaptation after preterm birth increase with time after birth and if the use of continuous positive airway pressure (CPAP) reduces these differences. METHODS: Unanesthetized lambs (9F, 8M) were delivered at 0.90 of term. Blood gases, metabolites, and cardiovascular and respiratory parameters were monitored in spontaneously breathing lambs for 8 h. Supplemental oxygen was administered via a face mask at 4 cmH2O CPAP. At 8 h, lung compliance was determined, and bronchoalveolar lavage fluid (BALF) was analyzed for total protein and surfactant phospholipids. Surfactant protein (SP) gene expression and protein expression of SP-A and pro-SP-C were determined in lung tissue. RESULTS: For 8 h after delivery, males had significantly lower arterial pH and higher Paco2, and a greater percentage of males were dependent on supplemental oxygen than females. Inspiratory effort was greater and lung compliance was lower in male lambs. Total protein concentration in BALF, SP gene expression, and SP-A protein levels were not different between sexes; pro-SP-C was 24% lower in males. CONCLUSION: The use of CPAP did not eliminate the male disadvantage, which continues for up to 8 h after preterm birth.


Assuntos
Nascimento Prematuro/fisiopatologia , Proteína A Associada a Surfactante Pulmonar/química , Proteína B Associada a Surfactante Pulmonar/química , Síndrome do Desconforto Respiratório do Recém-Nascido/fisiopatologia , Sistema Respiratório/fisiopatologia , Caracteres Sexuais , Adaptação Fisiológica , Animais , Animais Recém-Nascidos , Peso Corporal , Líquido da Lavagem Broncoalveolar/química , Dióxido de Carbono/sangue , Pressão Positiva Contínua nas Vias Aéreas , Feminino , Maturidade dos Órgãos Fetais , Regulação da Expressão Gênica no Desenvolvimento , Concentração de Íons de Hidrogênio , Pulmão/embriologia , Pulmão/metabolismo , Complacência Pulmonar , Masculino , Tamanho do Órgão , Oxigênio/administração & dosagem , Oxigênio/sangue , Fosfolipídeos/análise , Nascimento Prematuro/metabolismo , Proteína A Associada a Surfactante Pulmonar/biossíntese , Proteína A Associada a Surfactante Pulmonar/genética , Proteína B Associada a Surfactante Pulmonar/biossíntese , Proteína B Associada a Surfactante Pulmonar/genética , Síndrome do Desconforto Respiratório do Recém-Nascido/sangue , Ovinos , Vísceras/anatomia & histologia
12.
Artif Organs ; 40(5): E61-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26644374

RESUMO

An artificial placenta (AP) is an arterio-venous extracorporeal life support system that is connected to the fetal circulation via the umbilical vasculature. Previously, we published an article describing a pumpless AP system with a small priming volume. We subsequently developed a parallelized system, hypothesizing that the reduced circuit resistance conveyed by this modification would enable healthy fetal survival time to be prolonged. We conducted experiments using a premature lamb model to test this hypothesis. As a result, the fetal survival period was significantly prolonged (60.4 ± 3.8 vs. 18.2 ± 3.2 h, P < 0.01), and circuit resistance and minimal blood lactate levels were significantly lower in the parallel circuit group, compared with our previous single circuit group. Fetal physiological parameters remained stable until the conclusion of the experiments. In summary, parallelization of the AP system was associated with reduced circuit resistance and lactate levels and allowed preterm lamb fetuses to survive for a significantly longer period when compared with previous studies.


Assuntos
Órgãos Artificiais , Oxigenação por Membrana Extracorpórea/instrumentação , Feto/irrigação sanguínea , Recém-Nascido Prematuro/fisiologia , Placenta/fisiologia , Cordão Umbilical/irrigação sanguínea , Animais , Modelos Animais de Doenças , Desenho de Equipamento , Feminino , Feto/fisiologia , Gravidez , Ovinos , Carneiro Doméstico
13.
Tohoku J Exp Med ; 240(1): 7-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27558322

RESUMO

Surgical ligation for patent ductus arteriosus (PDA) in extremely low birth weight infants (ELBWIs) has been shown a possible association with neurodevelopmental impairment (NDI) because of its invasiveness. However, we have undergone surgical ligation for ELBWIs immediately after cyclooxygenase inhibitor failed to close a hemodynamically significant PDA (hsPDA) to maintain proper systemic circulation. We aimed to determine the effect of surgical ligation for hsPDA on NDI in ELBWIs. In enrolled 71 ELBWIs, the clinical parameters, including the developmental quotient (DQ), were collected and compared among three groups that were divided by closure mode: spontaneous closure (n = 11), cyclooxygenase inhibitor therapy (n = 37) and surgical ligation (n = 23). No significant differences in DQ at the age of 36 months among the three groups were found: Median (interquartile range): 92.0 (31.0), 89.0 (22.0) and 92.0 (24.5), respectively. In a comparison between groups of DQ < 70 (n = 15) and DQ ≥ 70 (n = 56), a significant difference was found in the parameters related to prematurity (p < 0.05 for each): gestational age [23.9 (1.70) vs. 25.4 (2.50) weeks], birth weight [595 (183) vs. 714 (192) g], Apgar score < 5 (1 min) (67% vs. 36%), and laser photocoagulation for retinopathy of prematurity (73% vs. 43%), but there was no significant association with hsPDA. Therefore, we propose that surgical ligation for hsPDA in ELBWIs should be immediately carried out for preventing future neurodevelopmental deterioration if the cyclooxygenase inhibitor failed to close hsPDA.


Assuntos
Permeabilidade do Canal Arterial/cirurgia , Lactente Extremamente Prematuro/fisiologia , Transtornos do Neurodesenvolvimento/prevenção & controle , Comportamento de Redução do Risco , Pré-Escolar , Permeabilidade do Canal Arterial/fisiopatologia , Feminino , Hemodinâmica , Humanos , Recém-Nascido , Ligadura , Masculino , Prognóstico
14.
Tohoku J Exp Med ; 234(4): 299-307, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25504018

RESUMO

White matter injury in premature infants is known to be major cause of long-term neurocognitive disability, but the pathogenic mechanism remains unclear, hampering our ability to develop preventions. Periventricular leukomalacia is a severe form of white matter injury. In the present study, we explored the effects of cerebral ischemia and/or intrauterine inflammation on the development of oligodendroglia in the cerebral white matter using chronically instrumented fetal sheep. Each fetus received one of three insults: hemorrhage, inflammation and their combination. In the hemorrhage group, 40% of the fetoplacental blood volume was acutely withdrawn, and 24 hours after removal, the blood was returned to the fetus. The inflammation group received intravenous granulocyte-colony stimulating factor and intra-amniotic endotoxin and thus suffered from necrotizing funisitis and chorioamnionitis. The inflammatory hemorrhage group underwent acute hemorrhage under the inflammatory state. The sham group received no insults. Importantly, periventricular leukomalacia was not detected in the sham and the inflammation groups. Differentiating oligodendroglia at various developmental stages were identified by immunohistochemical analysis with specific antibodies. No difference in the density of oligodendroglial progenitors was detected among the four groups, whereas oligodendroglial precursors were significantly reduced in the three insult groups, compared to sham control. Moreover, the density of immature oligodendroglia was higher in the inflammation group and the inflammatory hemorrhage group, while the density of mature oligodendroglia was highest in the hemorrhage group. We propose that cerebral ischemia or intrauterine inflammation induces the differentiation of oligodendroglial precursors in preterm fetuses, eventually resulting in their exhaustion.


Assuntos
Isquemia Encefálica/embriologia , Isquemia Encefálica/patologia , Diferenciação Celular , Feto/patologia , Inflamação/patologia , Oligodendroglia/patologia , Nascimento Prematuro/patologia , Substância Branca/patologia , Animais , Anticorpos/metabolismo , Apoptose , Astrócitos/patologia , Isquemia Encefálica/complicações , Contagem de Células , Linhagem da Célula , Feminino , Imuno-Histoquímica , Hemorragias Intracranianas/complicações , Hemorragias Intracranianas/embriologia , Hemorragias Intracranianas/patologia , Lectinas/metabolismo , Leucomalácia Periventricular/complicações , Leucomalácia Periventricular/embriologia , Leucomalácia Periventricular/patologia , Microglia/patologia , Modelos Biológicos , Ovinos , Substância Branca/embriologia
15.
Clin Pediatr Endocrinol ; 33(3): 144-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993719

RESUMO

Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) is a bone dysplasia caused by a pathogenic variant of fibroblast growth factor receptor 3 (FGFR3). Pathogenic variants in FGFR3 also cause thanatophoric dysplasia (TD) and achondroplasia. Although the findings of SADDAN and TD during the fetal and neonatal periods are similar, they differ in their long-term prognoses. We conducted FGFR3 analysis in one male patient because of the difficulty in differentiating SADDAN from TD during the neonatal period. We found that the patient had a pathogenic variant, p. Lys650Met, which was similar to that previously reported in patients with SADDAN. Reports on long-term survival in patient with SADDAN are scarce, and there have been no reports of treatment with GH. We administered GH therapy for a markedly short stature. After treatment, his height increased by 4 cm each year for 4 years, the frequency of hospitalizations due to respiratory failure decreased, and the health improved. FGFR3 analysis is useful for diagnosing SADDAN during the early neonatal period. GH therapy may have contributed to the patient's long-term survival.

16.
J Matern Fetal Neonatal Med ; 37(1): 2301651, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38195120

RESUMO

OBJECTIVE: Extremely preterm infants have low Nuclear Receptor (NR) expression in their developing hepatobiliary systems, as they rely on the placenta and maternal liver for compensation. NRs play a crucial role in detoxification and the elimination of both endogenous and xenobiotic substances by regulating key genes encoding specific proteins. In this study, we utilized an Artificial Placenta Therapy (APT) platform to examine the liver tissue expression of NRs of extremely preterm ovine fetuses. This fetal model, resembling a "knockout placenta," lacks placental and maternal support, while maintaining a healthy extrauterine survival. METHODS: Six ovine fetuses at 95 ± 1 d gestational age (GA; term = ∼150 d)/∼600 g delivery weight were maintained on an APT platform for a period of 120 h (APT Group). Six age-matched, in utero control fetuses were delivered at 99-100 d GA (Control Group). Fetal liver tissue samples and blood samples were collected at delivery from both groups and assessed mRNA expression of NRs and target transporters involved in the hepatobiliary transport system using quantitative PCR. Data were tested for group differences with ANOVA (p < .05 deemed significant). RESULTS: mRNA expression of NRs was identified in both the placenta and the extremely preterm ovine fetal liver. The expression of HNF4α, LRH1, LXR, ESR1, PXR, CAR, and PPARα/γ were significantly elevated in the liver of the APT Group compared to the Control Group. Moreover, target transporters NTCP, OATP1B3, BSEP, and MRP4 were upregulated, whereas MRP2 and MRP3 were unchanged. Although there was no evidence of liver necrosis or apoptotic changes histologically, there was an impact in the fetal liver of the ATP group at the tissue level with a significant increase in TNFα mRNA, a cytokine involved in liver inflammation, and blood elevation of transaminases. CONCLUSION: A number of NRs in the fetal liver were significantly upregulated after loss of placental-maternal support. However, the expression of target transporter genes appeared to be insufficient to compensate role of the placenta and maternal liver and avoid fetal liver damage, potentially due to insufficient excretion of organic anions.


Assuntos
Lactente Extremamente Prematuro , Placenta , Recém-Nascido , Gravidez , Lactente , Ovinos , Animais , Feminino , Humanos , Regulação para Cima , Fígado , Feto , Receptores Citoplasmáticos e Nucleares , RNA Mensageiro
17.
J Endocr Soc ; 7(9): bvad100, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37564887

RESUMO

Context: Intrauterine inflammation, a representative stressor for the fetus, has been shown to alter the hypothalamus-pituitary-adrenal (HPA) axis reactivity in preterm fetuses and increase postnatal cortisol production. However, the mechanism of this alteration has not yet been elucidated. Objective: We aimed to clarify the effects of endotoxin-induced intrauterine inflammation on the HPA axis of periviable sheep fetuses. Methods: Fetal sheep (0.63 term) were divided into 2 groups: (1) the endotoxin group, in which the endotoxin was injected into the amniotic fluid; and (2) the control group, in which the saline solution was injected instead. A corticotropin-releasing hormone (CRH) challenge test was performed on the third day after injection to evaluate the cortisol-producing capacity of each group. Gene expression levels in the fetal adrenal glands of each group were analyzed by RNA-seq. Results: The cortisol levels were significantly higher in the endotoxin group than in the control group after CRH challenge (P = .02). There were no significant differences in the responsiveness of adrenocorticotropin and cortisone between the 2 groups. Gene expression levels of the following enzymes involved in cortisol synthesis were significantly elevated in the endotoxin group: cytochrome P450 family (CYP) 11 subfamily A member 1 (log2FC 1.75), CYP 17 subfamily A member 1 (log2FC 3.41), 3ß-hydroxysteroid dehydrogenase type I (log2FC 1.13), steroidogenic acute regulatory protein (log2FC 1.09), and CYP 21 (log2FC 0.89). Conclusion: Periviable fetuses exposed to inflammation in utero have altered the responsiveness of the HPA axis with increased expression of enzymes involved in cortisol synthesis in the adrenal gland.

18.
Front Physiol ; 14: 1219185, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37692998

RESUMO

Introduction: Artificial placenta therapy (APT) is an experimental life support system to improve outcomes for extremely preterm infants (EPI) less than 1,000 g by obviating the need for pulmonary gas exchange. There are presently no long-term survival data for EPI supported with APT. To address this, we aimed to maintain 95d-GA (GA; term-150d) sheep fetuses for up to 2 weeks using our APT system. Methods: Pregnant ewes (n = 6) carrying singleton fetuses underwent surgical delivery at 95d GA. Fetuses were adapted to APT and maintained for up to 2 weeks with constant monitoring of key physiological parameters and extensive time-course blood and urine sampling, and ultrasound assessments. Six age-matched in-utero fetuses served as controls. Data were tested for group differences with ANOVA. Results: Six APT Group fetuses (100%) were adapted to APT successfully. The mean BW at the initiation of APT was 656 ± 42 g. Mean survival was 250 ± 72 h (Max 336 h) with systemic circulation and key physiological parameters maintained mostly within normal ranges. APT fetuses had active movements and urine output constantly exceeded infusion volume over the experiment. At delivery, there were no differences in BW (with edema in three APT group animals), brain weight, or femur length between APT and in-utero Control animals. Organ weights and humerus lengths were significantly reduced in the APT group (p < 0.05). Albumin, IGF-1, and phosphorus were significantly decreased in the APT group (p < 0.05). No cases of positive blood culture were detected. Conclusion: We report the longest use of APT to maintain extremely preterm fetuses to date. Fetal systemic circulation was maintained without infection, but growth was abnormal. This achievement suggests a need to focus not only on cardiovascular stability and health but also on the optimization of fetal growth and organ development. This new challenge will need to be overcome prior to the clinical translation of this technology.

19.
Reprod Sci ; 30(11): 3222-3234, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37264260

RESUMO

Despite widespread use, dosing regimens for antenatal corticosteroid (ACS) therapy are poorly unoptimized. ACS therapy exerts a programming effect on fetal development, which may be associated with an increased risk of cardiovascular disease. Having demonstrated that low-dose steroid therapy is an efficacious means of maturing the preterm lung, we hypothesized that a low-dose steroid exposure would exert fewer adverse functional and transcriptional changes on the fetal heart. We tested this hypothesis using low-dose steroid therapy (10 mg delivered to the ewe over 36 h via constant infusion) and compared cardiac effects with those of a higher dose treatment (30 mg delivered to the ewe over 24 h by intramuscular injection; simulating currently employed clinical ACS regimens). Fetal cardiac function was assessed by ultrasound on the day of ACS treatment initiation. Transcriptomic analyses were performed on fetal myocardial tissue. Relative to saline control, fetuses in the higher-dose clinical treatment group had significantly lower ratios between early diastolic ventricular filling and ventricular filling during atrial systole, and showed the differential expression of myocardial hypertrophy-associated transcripts including ßMHC, GADD45γ, and PPARγ. The long-term implications of these changes remain unstudied. Irrespective, optimizing ACS dosing regimens to maximize respiratory benefit while minimizing adverse effects on key organ systems, such as the heart, offers a means of improving the acute and long-term outcomes associated with this important obstetric therapy.


Assuntos
Betametasona , Cardiopatias , Ovinos , Feminino , Gravidez , Animais , Maturidade dos Órgãos Fetais , Corticosteroides , Esteroides , Coração Fetal/diagnóstico por imagem , Cardiopatias/tratamento farmacológico
20.
Am J Physiol Regul Integr Comp Physiol ; 303(7): R778-89, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22914752

RESUMO

Male preterm infants are at greater risk of respiratory morbidity and mortality than females but mechanisms are poorly understood. Our objective was to identify the basis for the "male disadvantage" following preterm birth using an ovine model of preterm birth in which survival of females is greater than males. At 0.85 of term, fetal sheep underwent surgery (11 female, 10 male) for the implantation of vascular catheters to monitor blood gases and arterial pressure. After cesarean delivery at 0.90 of term, lambs were monitored for 4 h while spontaneously breathing; lambs were then euthanized and static lung compliance measured. We analyzed surfactant phospholipid composition in amniotic fluid and in bronchoalveolar lavage fluid (BALF) taken at necropsy; we also analyzed surfactant protein (SP) expression in lung tissue. Before delivery male fetuses tended to have lower pH (P = 0.052) compared with females. One hour after delivery, males had significantly lower pH and higher arterial partial pressure of CO(2) (Pa(CO(2))), lactate, glucose, and mean arterial pressure than females. Two males died 1 h after birth. Static lung compliance was 37% lower in males than females (P < 0.05). In BALF, males had significantly more protein, a lower percentage of the phosphatidylcholine (PC) 32:0 (dipalmitoylphosphatidylcholine) and higher percentages of PC34:2 and PC36:2. There were no sex-related differences in lung architecture or expression of SP-A, -B, -C, and -D. The lower lung compliance in male preterm lambs compared with females may be due to altered surfactant phospholipid composition and function. These changes may compromise gas exchange and impair respiratory adaptation after male preterm birth.


Assuntos
Animais Recém-Nascidos/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Pulmão/fisiologia , Nascimento Prematuro/fisiopatologia , Surfactantes Pulmonares/química , Fatores Sexuais , Ovinos/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Pressão Sanguínea/fisiologia , Líquido da Lavagem Broncoalveolar/química , Feminino , Feto/fisiologia , Concentração de Íons de Hidrogênio , Complacência Pulmonar/fisiologia , Masculino , Modelos Animais , Fosfolipídeos/análise , Fosfolipídeos/metabolismo , Gravidez , Nascimento Prematuro/metabolismo , Surfactantes Pulmonares/metabolismo , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA