Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(13): 7925-7946, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38721779

RESUMO

Translational control is important in all life, but it remains a challenge to accurately quantify. When ribosomes translate messenger (m)RNA into proteins, they attach to the mRNA in series, forming poly(ribo)somes, and can co-localize. Here, we computationally model new types of co-localized ribosomal complexes on mRNA and identify them using enhanced translation complex profile sequencing (eTCP-seq) based on rapid in vivo crosslinking. We detect long disome footprints outside regions of non-random elongation stalls and show these are linked to translation initiation and protein biosynthesis rates. We subject footprints of disomes and other translation complexes to artificial intelligence (AI) analysis and construct a new, accurate and self-normalized measure of translation, termed stochastic translation efficiency (STE). We then apply STE to investigate rapid changes to mRNA translation in yeast undergoing glucose depletion. Importantly, we show that, well beyond tagging elongation stalls, footprints of co-localized ribosomes provide rich insight into translational mechanisms, polysome dynamics and topology. STE AI ranks cellular mRNAs by absolute translation rates under given conditions, can assist in identifying its control elements and will facilitate the development of next-generation synthetic biology designs and mRNA-based therapeutics.


Assuntos
Biossíntese de Proteínas , RNA Mensageiro , Ribossomos , Saccharomyces cerevisiae , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Polirribossomos/metabolismo , Polirribossomos/genética , Inteligência Artificial , Estresse Fisiológico/genética , Glucose/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Iniciação Traducional da Cadeia Peptídica
3.
Biomedicines ; 12(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062087

RESUMO

While genotoxic chemotherapeutic agents are among the most effective tools to combat cancer, they are often associated with severe adverse effects caused by indiscriminate DNA damage in non-tumor tissue as well as increased risk of secondary carcinogenesis. This study builds on our previous work demonstrating that the RNA Polymerase I (Pol I) transcription inhibitor CX-5461 elicits a non-canonical DNA damage response and our discovery of a critical role for Topoisomerase 2α (Top2α) in the initiation of Pol I-dependent transcription. Here, we identify Top2α as a mediator of CX-5461 response in the murine Eµ-Myc B lymphoma model whereby sensitivity to CX-5461 is dependent on cellular Top2α expression/activity. Most strikingly, and in contrast to canonical Top2α poisons, we found that the Top2α-dependent DNA damage induced by CX-5461 is preferentially localized at the ribosomal DNA (rDNA) promoter region, thereby highlighting CX-5461 as a loci-specific DNA damaging agent. This mechanism underpins the efficacy of CX-5461 against certain types of cancer and can be used to develop effective non-genotoxic anticancer drugs.

4.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596309

RESUMO

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA