Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Blood Marrow Transplant ; 17(7): 943-55, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20971201

RESUMO

Autologous transplantation of peripheral blood (PB) hematopoietic stem cells (HSCs) is a widely used strategy for reconstitution of blood cells following high-dose chemotherapy for hematologic malignancies such as multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute myeloid leukemia (AML), among others. Stem cells for transplantation are usually obtained from PB after treatment with chemotherapy with or without cytokine, usually granulocyte-colony stimulating factor (G-CSF), or after treatment with cytokine alone. The use of autologous peripheral blood stem cells (PBSCs) for transplantation is associated with the risk of contamination of the graft with tumor cells; whether this impacts response rates, progression-free survival (PFS), and overall survival (OS) is still debatable. This review summarizes the controversy surrounding tumor cell mobilization (TCM), the complexity of detection of minimal residual diseases, the available diagnostic tools, differences in TCM with available mobilization regimens, and the potential effect of TCM on clinical outcome. Collectively, these data suggest that new treatment paradigms to manage hematologic malignancies, such as MM, NHL, and AML, are needed and should focus on increasing the chemosensitivity of the tumor and eliminating residual disease.


Assuntos
Citocinas/efeitos adversos , Fator Estimulador de Colônias de Granulócitos/efeitos adversos , Neoplasias Hematológicas/patologia , Mobilização de Células-Tronco Hematopoéticas/efeitos adversos , Compostos Heterocíclicos/efeitos adversos , Células Neoplásicas Circulantes , Células-Tronco Neoplásicas/efeitos dos fármacos , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Transplante Autólogo/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzilaminas , Biomarcadores Tumorais , Terapia Combinada , Ciclamos , Citocinas/farmacologia , DNA de Neoplasias/sangue , Citometria de Fluxo , Fator Estimulador de Colônias de Granulócitos/farmacologia , Neoplasias Hematológicas/sangue , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/mortalidade , Neoplasias Hematológicas/cirurgia , Compostos Heterocíclicos/farmacologia , Humanos , Neoplasia Residual , Células-Tronco Neoplásicas/química , Células-Tronco Neoplásicas/citologia , Reação em Cadeia da Polimerase/métodos , Recidiva , Risco , Translocação Genética , Resultado do Tratamento
2.
Methods Enzymol ; 407: 542-55, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16757352

RESUMO

More than 10 years ago, Rheb (Ras homolog enriched in brain) was identified as a highly conserved protein that is a member of the Ras superfamily of small GTPases, which play critical roles in cell growth and proliferation. Recently, a convergence of genetic and biochemical evidence from yeast, Drosophila, and mammalian cells has placed Rheb upstream of the mammalian target of rapamycin (mTOR) and immediately downstream of the tumor suppressors TSC1 (hamartin) and TSC2 (tuberin). Rheb plays a key role in the regulation of cell growth in response to growth factors, nutrients, and amino acids linking PI3K and TOR signaling. Rheb activation of the nutrient and energy-sensitive TOR pathway leads to the direct phosphorylation of two known downstream translational control targets by mTOR, the 40S ribosomal S6 kinase 1 (S6K1) and the eukaryotic translation initiation factor 4E (eIF4E)- binding protein 1 (4E-BP1). Appropriate regulation of this pathway is crucial for the proper control of cell growth, proliferation, survival, and differentiation. Inappropriate regulation of these signaling molecules, therefore, can lead to a variety of human diseases. In this chapter, we describe cell biological and biochemical methods commonly used to study Rheb activation and dissect its role in the mTOR-signaling pathway.


Assuntos
Proteínas de Drosophila/fisiologia , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neuropeptídeos/fisiologia , Proteínas Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas/fisiologia , Animais , Proteínas de Transporte/metabolismo , Tamanho Celular , Drosophila , Ativação Enzimática , Farnesiltranstransferase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/análise , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fosfoproteínas/metabolismo , Fosforilação , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Ratos , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Transfecção/métodos
3.
Mol Cell ; 12(3): 663-73, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14527412

RESUMO

The assembly of cytoskeletal structures is coupled to other cellular processes. We have studied the molecular mechanism by which assembly of the yeast septin cytoskeleton is monitored and coordinated with cell cycle progression by analyzing a key regulatory protein kinase, Hsl1, that becomes activated only when the septin cytoskeleton is properly assembled. We first identified a regulatory region of Hsl1 that physically associates with the kinase domain and found that it performs an autoinhibitory function both in vivo and in vitro. Several septin binding domains lie near and overlap the inhibitory domain; these are important for Hsl1 function, and binding of two septins, Cdc11 and Cdc12, relieves the autoinhibition imposed by the kinase inhibitory domain in vitro. Our results suggest that binding to multiple septins activates Hsl1 kinase activity, thereby promoting cell cycle progression. The high conservation of Hsl1 indicates that similar mechanisms may monitor cytoskeletal organization in other eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/enzimologia , Células Eucarióticas/enzimologia , Fosfotransferases/metabolismo , Proteínas Quinases/metabolismo , Sítios de Ligação/fisiologia , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Retroalimentação Fisiológica/fisiologia , Fosfotransferases/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Leveduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA