Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Food Microbiol ; 119: 104431, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225041

RESUMO

Isolation of Salmonella from enrichment cultures of food or environmental samples is a complicated process. Numerous factors including fitness in various selective enrichment media, relative starting concentrations in pre-enrichment, and competition among multi-serovar populations and associated natural microflora, come together to determine which serovars are identified from a given sample. A recently developed approach for assessing the relative abundance (RA) of multi-serovar Salmonella populations (CRISPR-SeroSeq or Deep Serotyping, DST) is providing new insight into how these factors impact the serovars observed, especially when different selective enrichment methods are used to identify Salmonella from a primary enrichment sample. To illustrate this, we examined Salmonella-positive poultry pre-enrichment samples through the selective enrichment process in Tetrathionate (TT) and Rappaport Vassiliadis (RVS) broths and assessed recovery of serovars with each medium. We observed the RA of serovars detected post selective enrichment varied depending on the medium used, initial concentration, and competitive fitness factors, all which could result in minority serovars in pre-enrichment becoming dominant serovars post selective enrichment. The data presented provide a greater understanding of culture biases and lays the groundwork for investigations into robust enrichment and plating media combinations for detecting Salmonella serovars of greater concern for human health.


Assuntos
Salmonella enterica , Animais , Humanos , Salmonella enterica/genética , Sorogrupo , Aves Domésticas , Salmonella/genética , Sorotipagem/métodos , Meios de Cultura
2.
BMC Genomics ; 23(1): 275, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392797

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) O157:H7 is a pathogen known to reside in cattle feedlots. This retrospective study examined 181 STEC O157:H7 strains collected over 23 years from a closed-system feedlot. All strains were subjected to short-read sequencing, with a subset of 36 also subjected to long-read sequencing. RESULTS: Over 96% of the strains fell into four phylogenetically distinct clades. Clade membership was associated with multiple factors including stx composition and the alleles of a well-characterized polymorphism (tir 255 T > A). Small plasmids (2.7 to 40 kb) were found to be primarily clade specific. Within each clade, chromosomal rearrangements were observed along with a core phageome and clade specific phages. Across both core and mobile elements of the genome, multiple SNP alleles were in complete linkage disequilibrium across all strains within specific clades. Clade evolutionary rates varied between 0.9 and 2.8 SNP/genome/year with two tir A allele clades having the lowest evolutionary rates. Investigation into possible causes of the differing rates was not conclusive but revealed a synonymous based mutation in the DNA polymerase III of the fastest evolving clade. Phylogenetic trees generated through our bioinformatic pipeline versus the NCBI's pathogen detection project were similar, with the two tir A allele clades matching individual NCBI SNP clusters, and the two tir T allele clades assigned to multiple closely-related SNP clusters. CONCLUSIONS: In one ecological niche, a diverse STEC O157:H7 population exhibited different rates of evolution that associated with SNP alleles in linkage disequilibrium in the core genome and mobile elements, including tir 255 T > A.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Alelos , Animais , Bovinos , Ecossistema , Infecções por Escherichia coli/epidemiologia , Escherichia coli O157/genética , Filogenia , Estudos Retrospectivos
3.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483306

RESUMO

Microbial resistance to processing treatments poses a food safety concern, as treatment tolerant pathogens can emerge. Occasional foodborne outbreaks caused by pathogenic Escherichia coli have led to human and economic losses. Therefore, this study screened for the extreme heat resistance (XHR) phenotype as well as one known genetic marker, the locus of heat resistance (LHR), in 4,123 E. coli isolates from diverse meat animals at different processing stages. The prevalences of XHR and LHR among the meat-borne E. coli were found to be 10.3% and 11.4%, respectively, with 19% agreement between the two. Finished meat products showed the highest LHR prevalence (24.3%) compared to other processing stages (0 to 0.6%). None of the LHR+E. coli in this study would be considered pathogens based on screening for virulence genes. Four high-quality genomes were generated by whole-genome sequencing of representative LHR+ isolates. Nine horizontally acquired LHRs were identified and characterized, four plasmid-borne and five chromosomal. Nine newly identified LHRs belong to ClpK1 LHR or ClpK2 LHR variants sharing 61 to 68% nucleotide sequence identity, while one LHR appears to be a hybrid. Our observations suggest positive correlation between the number of LHR regions present in isolates and the extent of heat resistance. The isolate exhibiting the highest degree of heat resistance possessed four LHRs belonging to three different variant groups. Maintenance of as many as four LHRs in a single genome emphasizes the benefits of the LHR in bacterial physiology and stress response.IMPORTANCE Currently, a "multiple-hurdle" approach based on a combination of different antimicrobial interventions, including heat, is being utilized during meat processing to control the burden of spoilage and pathogenic bacteria. Our recent study (M. Guragain, G. E. Smith, D. A. King, and J. M. Bosilevac, J Food Prot 83:1438-1443, 2020, https://doi.org/10.4315/JFP-20-103) suggests that U.S. beef cattle harbor Escherichia coli that possess the locus of heat resistance (LHR). LHR seemingly contributes to the global stress tolerance in bacteria and hence poses a food safety concern. Therefore, it is important to understand the distribution of the LHRs among meat-borne bacteria identified at different stages of different meat processing systems. Complete genome sequencing and comparative analysis of selected heat-resistant bacteria provide a clearer understanding of stress and heat resistance mechanisms. Further, sequencing data may offer a platform to gain further insights into the genetic background that provides optimal bacterial tolerance against heat and other processing treatments.


Assuntos
Escherichia coli/fisiologia , Genoma Bacteriano , Carne/microbiologia , Escherichia coli/genética , Temperatura Alta , Sequenciamento Completo do Genoma
4.
Food Microbiol ; 93: 103615, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32912587

RESUMO

Little progress has been made in decreasing the incidence rate of salmonellosis in the US over the past decade. Mitigating the contribution of contaminated raw meat to the salmonellosis incidence rate requires rapid methods for quantifying Salmonella, so that highly contaminated products can be removed before entering the food chain. Here we evaluated the use of Time-to-Positivity (TTP) as a rapid, semi-quantitative approach for estimating Salmonella contamination levels in ground beef. Growth rates of 14 Salmonella strains (inoculated at log 1 to -2 CFU/g) were characterized in lean ground beef mTSB enrichments and time-to-detection was determined using culture and molecular detection methods. Enrichments were sampled at five timepoints and results were used to construct a prediction model of estimated contamination level by TTP (superscript indicates time in hours) defined as TTP4: ≥5 CFU/g; TTP6: ≤5, ≥1 CFU/g; TTP8: ≤1, ≥0.01 CFU/g; with samples negative at 8 h estimated ≤0.01 CFU/g. Model performance measures showed high sensitivity (100%) and specificity (83% and 93% for two detection methods) for samples with a TTP4, with false negative rates of 0%.


Assuntos
Contaminação de Alimentos/análise , Microbiologia de Alimentos , Carne/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Bovinos , DNA Bacteriano , Patologia Molecular/métodos , Intoxicação Alimentar por Salmonella , Infecções por Salmonella , Salmonella enterica/genética , Sensibilidade e Especificidade
5.
BMC Microbiol ; 20(1): 250, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787780

RESUMO

BACKGROUND: Mannheimia haemolytica strains isolated from North American cattle have been classified into two genotypes (1 and 2). Although members of both genotypes have been isolated from the upper and lower respiratory tracts of cattle with or without bovine respiratory disease (BRD), genotype 2 strains are much more frequently isolated from diseased lungs than genotype 1 strains. The mechanisms behind the increased association of genotype 2 M. haemolytica with BRD are not fully understood. To address that, and to search for interventions against genotype 2 M. haemolytica, complete, closed chromosome assemblies for 35 genotype 1 and 34 genotype 2 strains were generated and compared. Searches were conducted for the pan genome, core genes shared between the genotypes, and for genes specific to either genotype. Additionally, genes encoding outer membrane proteins (OMPs) specific to genotype 2 M. haemolytica were identified, and the diversity of their protein isoforms was characterized with predominantly unassembled, short-read genomic sequences for up to 1075 additional strains. RESULTS: The pan genome of the 69 sequenced M. haemolytica strains consisted of 3111 genes, of which 1880 comprised a shared core between the genotypes. A core of 112 and 179 genes or gene variants were specific to genotype 1 and 2, respectively. Seven genes encoding predicted OMPs; a peptidase S6, a ligand-gated channel, an autotransporter outer membrane beta-barrel domain-containing protein (AOMB-BD-CP), a porin, and three different trimeric autotransporter adhesins were specific to genotype 2 as their genotype 1 homologs were either pseudogenes, or not detected. The AOMB-BD-CP gene, however, appeared to be truncated across all examined genotype 2 strains and to likely encode dysfunctional protein. Homologous gene sequences from additional M. haemolytica strains confirmed the specificity of the remaining six genotype 2 OMP genes and revealed they encoded low isoform diversity at the population level. CONCLUSION: Genotype 2 M. haemolytica possess genes encoding conserved OMPs not found intact in more commensally prone genotype 1 strains. Some of the genotype 2 specific genes identified in this study are likely to have important biological roles in the pathogenicity of genotype 2 M. haemolytica, which is the primary bacterial cause of BRD.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Doenças dos Bovinos/microbiologia , Mannheimia haemolytica/genética , Infecções Respiratórias/veterinária , Sequenciamento Completo do Genoma/métodos , Animais , Bovinos , Cromossomos Bacterianos/genética , Genótipo , Mannheimia haemolytica/classificação , Mannheimia haemolytica/isolamento & purificação , Mutação , Filogenia
6.
Foodborne Pathog Dis ; 14(12): 687-695, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29035101

RESUMO

In the beef industry, product contamination by Salmonella enterica is a serious public health concern, which may result in human infection and cause significant financial loss due to product recalls. Currently, the precise mechanism and pathogen source responsible for Salmonella contamination in commercial establishments are not well understood. We characterized 89 S. enterica strains isolated from beef trim with respect to their biofilm-forming ability, antimicrobial resistance, and biofilm cell survival/recovery growth after sanitizer exposure. A total of 28 Salmonella serovars was identified within these strains. The most common serovars identified were Anatum, Dublin, Montevideo, and Typhimurium, with these accounting for nearly half of the total strains. The vast majority (86%) of the strains was able to develop strong biofilms, and the biofilm-forming ability was highly strain dependent and related to cell surface expression of extracellular polymeric structures. These strains also demonstrated strong tolerance to quaternary ammonium chloride (QAC) and chlorine dioxide (ClO2), but were more sensitive to chlorine treatment. Sanitizer tolerance and bacterial postsanitization recovery growth were closely associated with strains' biofilm-forming ability. Thirty percent of the examined strains were found resistant to multiple antimicrobial agents and the resistance phenotypes were serovar associated, but not related to strains' biofilm-forming ability. Pulsed-field gel electrophoresis analysis tended to group strains by serovar rather than by biofilm-forming ability. Collectively, these data indicate that the strong biofilm formers of certain S. enterica strains/serovars possess significant potential for causing meat product contamination in meat processing environment.


Assuntos
Biofilmes/efeitos dos fármacos , Desinfetantes/farmacologia , Farmacorresistência Bacteriana Múltipla , Carne Vermelha/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Antibacterianos/farmacologia , Bovinos , Cloro/farmacologia , Compostos Clorados/farmacologia , Contagem de Colônia Microbiana , Contaminação de Alimentos , Manipulação de Alimentos , Microbiologia de Alimentos , Técnicas de Genotipagem , Óxidos/farmacologia , Compostos de Amônio Quaternário/farmacologia , Salmonella enterica/efeitos dos fármacos
7.
BMC Genomics ; 17(1): 982, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27894259

RESUMO

BACKGROUND: Mannheimia haemolytica typically resides in cattle as a commensal member of the upper respiratory tract microbiome. However, some strains can invade their lungs and cause respiratory disease and death, including those with multi-drug resistance. A nucleotide polymorphism typing system was developed for M. haemolytica from the genome sequences of 1133 North American isolates, and used to identify genetic differences between isolates from the lungs and upper respiratory tract of cattle with and without clinical signs of respiratory disease. RESULTS: A total of 26,081 nucleotide polymorphisms were characterized after quality control filtering of 48,403 putative polymorphisms. Phylogenetic analyses of nucleotide polymorphism genotypes split M. haemolytica into two major genotypes (1 and 2) that each were further divided into multiple subtypes. Multiple polymorphisms were identified with alleles that tagged genotypes 1 or 2, and their respective subtypes. Only genotype 2 M. haemolytica associated with the lungs of diseased cattle and the sequence of a particular integrative and conjugative element (ICE). Additionally, isolates belonging to one subtype of genotype 2 (2b), had the majority of antibiotic resistance genes detected in this study, which were assorted into seven combinations that ranged from 1 to 12 resistance genes. CONCLUSIONS: Typing of diverse M. haemolytica by nucleotide polymorphism genotypes successfully identified associations with diseased cattle lungs, ICE sequence, and antibiotic resistance genes. Management of cattle by their carriage of M. haemolytica could be an effective intervention strategy to reduce the prevalence of respiratory disease and supplemental needs for antibiotic treatments in North American herds.


Assuntos
Conjugação Genética , Farmacorresistência Bacteriana , Genoma Bacteriano , Genômica , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/fisiologia , Pneumonia Enzoótica dos Bezerros/microbiologia , Animais , Antibacterianos/farmacologia , Bovinos , Ligação Genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Mannheimia haemolytica/classificação , Polimorfismo de Nucleotídeo Único
8.
Foodborne Pathog Dis ; 13(4): 190-5, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26974651

RESUMO

Contamination of beef products by Shiga toxin-producing Escherichia coli is a concern for food safety with a particular subset, the enterohemorrhagic E. coli (EHEC), being the most relevant to human disease. To mitigate food safety risks, preharvest intervention strategies have been implemented with the aim to reduce EHEC in cattle. One class of interventions that has been widely used in feedlots is direct-fed microbials (DFMs), which can contain various dosing rates of probiotic bacteria. Here we compare the use of two different doses of a commercially available DFM on total EHEC load in a commercial feedlot setting. The DFMs used were the standard 10(9) Propionibacterium freudenreichii and 10(6) Lactobacillus acidophilus colony forming units (CFUs)/head/day dose of Bovamine(®) (Nutrition Physiology Company, Guymon, OK) and the higher dose, Bovamine Defend™ (Nutrition Physiology Company), which is dosed at 10(9) P. freudenreichii and 10(9) Lactobacillus acidophilus CFUs/head/day. To analyze the total EHEC fecal concentration, 2200 head of cattle were assigned a DFM feed regimen lasting approximately 5 months. At harvest, 480 head of cattle were sampled using rectoanal mucosal swabs. A quantitative polymerase chain reaction assay targeting ecf1 was used to enumerate the total EHEC fecal concentration for 240 head fed the low-dose DFM and 240 head fed the high-dose DFM. No significant difference (p > 0.05) in the fecal concentration of total EHEC was observed between the two doses. This suggests that using an increased dosage provides no additional reduction in the total EHEC fecal concentration of feedlot cattle compared to the standard dosage.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Antibacterianos/administração & dosagem , Doenças dos Bovinos/prevenção & controle , Escherichia coli Êntero-Hemorrágica/isolamento & purificação , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Probióticos/administração & dosagem , Canal Anal/microbiologia , Animais , Antibacterianos/uso terapêutico , Bovinos , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana/veterinária , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Escherichia coli Êntero-Hemorrágica/classificação , Escherichia coli Êntero-Hemorrágica/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Mucosa Intestinal/microbiologia , Lactobacillus acidophilus/crescimento & desenvolvimento , Masculino , Tipagem Molecular/veterinária , New Mexico , Orquiectomia/veterinária , Probióticos/uso terapêutico , Propionibacterium freudenreichii/crescimento & desenvolvimento , Reto/microbiologia
9.
J Antimicrob Chemother ; 70(10): 2763-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26142410

RESUMO

OBJECTIVES: The objective of this study was to determine the effectiveness of WGS in identifying resistance genotypes of MDR Escherichia coli and whether these correlate with observed phenotypes. METHODS: Seventy-six E. coli strains were isolated from farm cattle and measured for phenotypic resistance to 15 antimicrobials with the Sensititre(®) system. Isolates with resistance to at least four antimicrobials in three classes were selected for WGS using an Illumina MiSeq. Genotypic analysis was conducted with in-house Perl scripts using BLAST analysis to identify known genes and mutations associated with clinical resistance. RESULTS: Over 30 resistance genes and a number of resistance mutations were identified among the E. coli isolates. Resistance genotypes correlated with 97.8% specificity and 99.6% sensitivity to the identified phenotypes. The majority of discordant results were attributable to the aminoglycoside streptomycin, whereas there was a perfect genotype-phenotype correlation for most antibiotic classes such as tetracyclines, quinolones and phenicols. WGS also revealed information about rare resistance mechanisms, such as structural mutations in chromosomal copies of ampC conferring third-generation cephalosporin resistance. CONCLUSIONS: WGS can provide comprehensive resistance genotypes and is capable of accurately predicting resistance phenotypes, making it a valuable tool for surveillance. Moreover, the data presented here showing the ability to accurately predict resistance suggest that WGS may be used as a screening tool in selecting anti-infective therapy, especially as costs drop and methods improve.


Assuntos
Doenças dos Bovinos/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Animais , Antibacterianos/farmacologia , Bovinos , Proteínas de Escherichia coli/genética , Ordem dos Genes , Estudos de Associação Genética , Genoma Bacteriano , Genótipo , Testes de Sensibilidade Microbiana , Análise de Sequência de DNA
10.
Appl Environ Microbiol ; 81(2): 713-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398858

RESUMO

Specific concerns have been raised that third-generation cephalosporin-resistant (3GC(r)) Escherichia coli, trimethoprim-sulfamethoxazole-resistant (COT(r)) E. coli, 3GC(r) Salmonella enterica, and nalidixic acid-resistant (NAL(r)) S. enterica may be present in cattle production environments, persist through beef processing, and contaminate final products. The prevalences and concentrations of these organisms were determined in feces and hides (at feedlot and processing plant), pre-evisceration carcasses, and final carcasses from three lots of fed cattle (n = 184). The prevalences and concentrations were further determined for strip loins from 103 of the carcasses. 3GC(r) Salmonella was detected on 7.6% of hides during processing and was not detected on the final carcasses or strip loins. NAL(r) S. enterica was detected on only one hide. 3GC(r) E. coli and COT(r) E. coli were detected on 100.0% of hides during processing. Concentrations of 3GC(r) E. coli and COT(r) E. coli on hides were correlated with pre-evisceration carcass contamination. 3GC(r) E. coli and COT(r) E. coli were each detected on only 0.5% of final carcasses and were not detected on strip loins. Five hundred and 42 isolates were screened for extraintestinal pathogenic E. coli (ExPEC) virulence-associated markers. Only two COT(r) E. coli isolates from hides were ExPEC, indicating that fed cattle products are not a significant source of ExPEC causing human urinary tract infections. The very low prevalences of these organisms on final carcasses and their absence on strip loins demonstrate that current sanitary dressing procedures and processing interventions are effective against antimicrobial-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Carne/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Cadáver , Bovinos , Microbiologia Ambiental , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Manipulação de Alimentos , Testes de Sensibilidade Microbiana , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Fatores de Virulência/genética
11.
Front Microbiol ; 15: 1307563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410382

RESUMO

There is an increasing awareness in the field of Salmonella epidemiology that focusing control efforts on those serotypes which cause severe human health outcomes, as opposed to broadly targeting all Salmonella, will likely lead to the greatest advances in decreasing the incidence of salmonellosis. Yet, little guidance exists to support validated, scientific selection of target serotypes. The goal of this perspective is to develop an approach to identifying serotypes of greater concern and present a case study using meat- and poultry-attributed outbreaks to examine challenges in developing a standardized framework for defining target serotypes.

12.
Appl Environ Microbiol ; 79(7): 2273-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23354706

RESUMO

In the United States, the blaCMY-2 gene contained within incompatibility type A/C (IncA/C) plasmids is frequently identified in extended-spectrum-cephalosporin-resistant (ESC(r)) Escherichia coli strains from both human and cattle sources. Concerns have been raised that therapeutic use of ceftiofur in cattle may increase the prevalence of ESC(r) E. coli. We report that herd ESC(r) E. coli fecal and hide prevalences throughout the residency of cattle at a feedlot, including during the period of greatest ceftiofur use at the feedlot, were either not significantly different (P ≥ 0.05) or significantly less (P < 0.05) than the respective prevalences at arrival. Longitudinal sampling of cattle treated with ceftiofur demonstrated that once the transient increase of ESC(r) E. coli shedding that follows ceftiofur injection abated, ceftiofur-injected cattle were no more likely than untreated members of the same herd to shed ESC(r) E. coli. Pulsed-field gel electrophoresis (PFGE) genotyping, antibiotic resistance phenotyping, screening for presence of the blaCMY-2 gene, and plasmid replicon typing were performed on 312 ESC(r) E. coli isolates obtained during six sampling periods spanning the 10-month residence of cattle at the feedlot. The identification of only 26 unique PFGE genotypes, 12 of which were isolated during multiple sampling periods, suggests that clonal expansion of feedlot-adapted blaCMY-2 E. coli strains contributed more to the persistence of blaCMY-2 than horizontal transfer of IncA/C plasmids between E. coli strains at this feedlot. We conclude that therapeutic use of ceftiofur at this cattle feedlot did not significantly increase the herd prevalence of ESC(r) E. coli.


Assuntos
Antibacterianos/administração & dosagem , Cefalosporinas/administração & dosagem , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Pele/microbiologia , Resistência beta-Lactâmica , beta-Lactamases/metabolismo , Animais , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Portador Sadio/veterinária , Bovinos , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Epidemiologia Molecular , Tipagem Molecular , Prevalência , beta-Lactamases/genética
13.
Appl Environ Microbiol ; 79(15): 4744-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793628

RESUMO

Lymph nodes (mandibular, mesenteric, mediastinal, and subiliac; n = 68) and fecal (n = 68) and hide (n = 35) samples were collected from beef carcasses harvested in an abattoir in Mexico. Samples were analyzed for Salmonella, and presumptive colonies were subjected to latex agglutination. Of the isolates recovered, a subset of 91 was characterized by serotyping, pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility phenotyping. Salmonella was isolated from 100% (hide), 94.1% (feces), 91.2% (mesenteric), 76.5% (subiliac), 55.9% (mandibular), and 7.4% (mediastinal) of samples. From the 87 typeable isolates, eight Salmonella enterica serotypes, including Kentucky (32.2%), Anatum (29.9%), Reading (17.2%), Meleagridis (12.6%), Cerro (4.6%), Muenster (1.1%), Give (1.1%), and Mbandaka (1.1%), were identified. S. Meleagridis was more likely (P = 0.03) to be recovered from lymph nodes than from feces or hides, whereas S. Kentucky was more likely (P = 0.02) to be recovered from feces and hides than from lymph nodes. The majority (59.3%) of the Salmonella isolates were pansusceptible; however, multidrug resistance was observed in 13.2% of isolates. Typing by PFGE revealed that Salmonella strains generally clustered by serotype, but some serotypes (Anatum, Kentucky, Meleagridis, and Reading) were comprised of multiple PFGE subtypes. Indistinguishable PFGE subtypes and, therefore, serotypes were isolated from multiple sample types, and multiple PFGE subtypes were commonly observed within an animal. Given the overrepresentation of some serotypes within lymph nodes, we hypothesize that certain Salmonella strains may be better at entering the bovine host than other Salmonella strains or that some may be better adapted for survival within lymph nodes. Our data provide insight into the ecology of Salmonella within cohorts of cattle and offer direction for intervention opportunities.


Assuntos
Doenças dos Bovinos/microbiologia , Polimorfismo Genético , Salmonelose Animal/microbiologia , Salmonella/classificação , Salmonella/genética , Matadouros , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado/veterinária , Fezes/microbiologia , Linfonodos/microbiologia , México , Testes de Sensibilidade Microbiana/veterinária , Filogenia , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Salmonelose Animal/epidemiologia , Sorotipagem/veterinária , Pele/microbiologia
14.
Foodborne Pathog Dis ; 10(4): 368-74, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23566273

RESUMO

Bovine peripheral lymph nodes (LNs), including subiliac LNs, have been identified as a potential source of human exposure to Salmonella enterica, when adipose trim containing these nodes is incorporated into ground beef. In order to gain a better understanding of the burden of S. enterica in peripheral LNs of feedlot and cull cattle, a cross-sectional study was undertaken in which 3327 subiliac LNs were collected from cattle at harvest in seven plants, located in three geographically distinct regions of the United States. Samples were collected in three seasons: Fall 2010, Winter/Spring 2011, and Summer/Fall 2011. A convenience sample of 76 LNs per day, 2 days per season (approximately 1 month apart), was collected per plant, from carcasses held in the cooler for no less than 24 h. Every 10(th) carcass half on a rail was sampled, in an attempt to avoid oversampling any single cohort of cattle. Median point estimates of S. enterica contamination were generally low (1.3%); however, median Salmonella prevalence was found to be greater in subiliac LNs of feedlot cattle (11.8%) compared to those of cull cattle (0.65%). Enumeration analysis of a subset of 618 feedlot cattle LNs showed that 67% of those harboring S. enterica (97 of 144) did so at concentrations ranging from <0.1 to 1.8 log10 CFU/g, while 33% carried a higher burden of S. enterica, with levels ranging from 1.9 to >3.8 log10 CFU/g. Serotyping of S. enterica isolated identified 24 serotypes, with the majority being Montevideo (44.0%) and Anatum (24.8%). Antimicrobial susceptibility phenotypes were determined for all isolates, and the majority (86.1%) were pansusceptible; however, multidrug-resistant isolates (8.3%) were also occasionally observed. As Salmonella contained within LNs are protected from carcass interventions, research is needed to define opportunities for mitigating the risk of Salmonella contamination in LNs of apparently healthy cattle.


Assuntos
Portador Sadio , Bovinos/microbiologia , Farmacorresistência Bacteriana Múltipla , Linfonodos/microbiologia , Salmonella enterica/isolamento & purificação , Animais , Doenças dos Bovinos/microbiologia , Contagem de Colônia Microbiana , Estudos Transversais , Testes de Sensibilidade Microbiana , Fenótipo , Salmonelose Animal/microbiologia , Salmonella enterica/classificação , Estações do Ano , Sorotipagem , Estados Unidos
15.
Front Microbiol ; 14: 1303387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169669

RESUMO

Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains with the T allele in the translocated intimin receptor polymorphism (tir) 255 A > T gene associate with human disease more than strains with an A allele; however, the allele is not thought to be the direct cause of this difference. We sequenced a diverse set of STEC O157:H7 strains (26% A allele, 74% T allele) to identify linked differences that might underlie disease association. The average chromosome and pO157 plasmid size and gene content were significantly greater within the tir 255 A allele strains. Eighteen coding sequences were unique to tir 255 A allele chromosomes, and three were unique to tir 255 T allele chromosomes. There also were non-pO157 plasmids that were unique to each tir 255 allele variant. The overall average number of prophages did not differ between tir 255 allele strains; however, there were different types between the strains. Genomic and mobile element variation linked to the tir 255 polymorphism may account for the increased frequency of the T allele isolates in human disease.

16.
Appl Environ Microbiol ; 78(8): 2716-26, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22327585

RESUMO

The objective of this study was to characterize Salmonella enterica contamination on carcasses in two large U.S. commercial pork processing plants. The carcasses were sampled at three points, before scalding (prescald), after dehairing/polishing but before evisceration (preevisceration), and after chilling (chilled final). The overall prevalences of Salmonella on carcasses at these three sampling points, prescald, preevisceration, and after chilling, were 91.2%, 19.1%, and 3.7%, respectively. At one of the two plants, the prevalence of Salmonella was significantly higher (P < 0.01) for each of the carcass sampling points. The prevalences of carcasses with enumerable Salmonella at prescald, preevisceration, and after chilling were 37.7%, 4.8%, and 0.6%, respectively. A total of 294 prescald carcasses had Salmonella loads of >1.9 log CFU/100 cm(2), but these carcasses were not equally distributed between the two plants, as 234 occurred at the plant with higher Salmonella prevalences. Forty-one serotypes were identified on prescald carcasses with Salmonella enterica serotypes Derby, Typhimurium, and Anatum predominating. S. enterica serotypes Typhimurium and London were the most common of the 24 serotypes isolated from preevisceration carcasses. The Salmonella serotypes Johannesburg and Typhimurium were the most frequently isolated serotypes of the 9 serotypes identified from chilled final carcasses. Antimicrobial susceptibility was determined for selected isolates from each carcass sampling point. Multiple drug resistance (MDR), defined as resistance to three or more classes of antimicrobial agents, was identified for 71.2%, 47.8%, and 77.5% of the tested isolates from prescald, preevisceration, and chilled final carcasses, respectively. The results of this study indicate that the interventions used by pork processing plants greatly reduce the prevalence of Salmonella on carcasses, but MDR Salmonella was isolated from 3.2% of the final carcasses sampled.


Assuntos
Farmacorresistência Bacteriana , Salmonelose Animal/epidemiologia , Salmonelose Animal/microbiologia , Salmonella enterica/isolamento & purificação , Suínos/microbiologia , Matadouros , Animais , Carga Bacteriana , Manipulação de Alimentos , Fenótipo , Prevalência , Salmonella enterica/classificação , Salmonella enterica/efeitos dos fármacos , Sorotipagem , Estados Unidos/epidemiologia
17.
J Food Prot ; 85(2): 323-335, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788437

RESUMO

ABSTRACT: Third-generation cephalosporins (3GCs) are preferred treatments for serious human Salmonella enterica infections. Beef cattle are suspected to contribute to human 3GC-resistant Salmonella infections. Commensal 3GC-resistant Escherichia coli are thought to act as reservoirs of 3GC resistance because these strains are isolated more frequently than are 3GC-resistant Salmonella strains at beef cattle feedyards. During each of 24 consecutive months, four samples of pen surface material were obtained from five pens (N = 480) at a Nebraska feedyard to determine to the contribution of 3GC-resistant E. coli to the occurrence of 3GC-resistant Salmonella. Illumina whole genome sequencing was performed, and susceptibility to 14 antimicrobial agents was determined for 121 3GC-susceptible Salmonella, 121 3GC-resistant Salmonella, and 203 3GC-resistant E. coli isolates. 3GC-susceptible Salmonella isolates were predominantly from serotypes Muenchen (70.2%) and Montevideo clade 1 (23.1%). 3GC-resistant Salmonella isolates were predominantly from serotypes Montevideo clade 2 (84.3%). One bla gene type (blaCMY-2) and the IncC plasmid replicon were present in 100 and 97.5% of the 3GC-resistant Salmonella, respectively. Eleven bla gene types were detected in the 3GC-resistant E. coli, which were distributed across 42 multilocus sequence types. The blaCMY-2 gene and IncC plasmid replicon were present in 37.9 and 9.9% of the 3GC-resistant E. coli, respectively. These results suggest that 3GC resistance in Salmonella was primarily due the persistence of Salmonella Montevideo clade 2 with very minimal or no contribution from 3GC-resistant E. coli via horizontal gene transfer and that 3GC-resistant E. coli may not be a useful indicator for 3GC-resistant Salmonella in beef cattle production environments.


Assuntos
Escherichia coli , Salmonella enterica , Animais , Antibacterianos/farmacologia , Bovinos , Cefalosporinas/farmacologia , Transferência Genética Horizontal , Estudos Longitudinais , Salmonella enterica/genética
18.
Appl Environ Microbiol ; 77(5): 1783-96, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239549

RESUMO

The prevalence and diversity of multidrug-resistant (MDR) Salmonella enterica strains associated with cattle at harvest in the United States were examined. Hides and carcasses of cattle were sampled at processing plants (n = 6) located in four geographically distant regions from July 2005 to April 2006. The mean prevalences of Salmonella on hides, preevisceration carcasses (immediately after hide removal), and postintervention carcasses (in the chiller and after the full complement of interventions) were 89.6%, 50.2%, and 0.8%, respectively. The values for MDR Salmonella enterica strains (defined as those resistant to two or more antimicrobials) as percentages of Salmonella prevalence were 16.7% (95% confidence interval [CI], 8.3 to 25.1%; median percent prevalence, 6.9%), 11.7% (95% CI, 4.4 to 19.0%; median, 4.8%), and 0.33% (95% CI, -0.3 to 0.70%; median, 0%), respectively. In this study, 16,218 Salmonella hide and carcass isolates were screened for antimicrobial resistance. Of these, 978 (6.0%) unique MDR S. enterica isolates were identified and serotyped and their XbaI pulsed-field gel electrophoresis (PFGE) profiles determined. The predominant MDR S. enterica serotypes observed were Newport (53.1%), Typhimurium (16.6%), and Uganda (10.9%). Differences in MDR S. enterica prevalence were detected, and PFGE analysis revealed both epidemic clusters (profiles found in plants in multiple regions/seasons) and endemic clusters (profiles observed in plants in limited regions/seasons) within several of the MDR serotypes examined. Despite these differences, multiple-hurdle processing interventions employed at all plants were found to be quite effective and decreased Salmonella carcass contamination by 98.4% (95% CI, 97.6 to 99.7%).


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Variação Genética , Salmonelose Animal/microbiologia , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/isolamento & purificação , Animais , Técnicas de Tipagem Bacteriana , Bovinos , Análise por Conglomerados , Eletroforese em Gel de Campo Pulsado , Genótipo , Tipagem Molecular , Salmonella enterica/classificação , Sorotipagem , Estados Unidos
19.
Foodborne Pathog Dis ; 8(4): 535-40, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21453118

RESUMO

It is thought that antimicrobial resistance imposes a fitness cost on bacteria, so that a reduction in antimicrobial use may reduce the incidence of resistant bacteria. The objectives of the present study were to determine (1) whether multidrug resistant (MDR) Escherichia coli field strains with different plasmid profiles show disparate plasmid loss when grown over time without selection pressure; (2) whether the number of plasmids present in the cell affects growth. Nine ß-hemolytic E. coli strains from swine (n=8) and cattle (n=1) were grown in separate continuous-flow vessels for 36 days without antimicrobial selection. Populations were enumerated on brain heart infusion agar and brain heart infusion agar with tetracycline on days 2, 5, 8, 15, 22, 29, and 36. Growth rates, plasmid profiles and susceptibility profiles of the strains were compared, and day 36 isolates (n=40, five for each MDR strain) were compared with their corresponding day 0 strains. Plasmid content of the nine field strains ranged from zero to eight with sizes from 3.2 to 165 kb. Changes in susceptibility profiles of day 36 isolates were observed among 20% (8 of 40) of the isolates. MDR E. coli largely maintained their original plasmid profiles, replicon types, and susceptibility profiles over 36 days of continuous culture. There was no significant difference in maximum specific growth rate among strains when compared with the plasmid-free strain or when day 36 isolates were compared with their own day 0 strain. This suggests that there is little fitness cost in the maintenance of multiple plasmids of various sizes under the conditions of this study. Other strategies rather than merely reducing antimicrobial usage are needed to combat the emergence of MDR bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fatores R/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/crescimento & desenvolvimento , Fermentação , Genótipo , Hemólise , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Replicon , Seleção Genética , Fatores de Tempo
20.
Microbiol Spectr ; 9(3): e0143121, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34851158

RESUMO

Histophilus somni is a Gram-negative bacterial organism that acts as an opportunistic pathogen and is a fastidious member of the Pasteurellaceae family associated with diseases of respiratory, reproductive, cardiac, and other tissues of ruminants. We identified an intervening sequence (IVS) embedded in all five copies of the 23S rRNA gene in the closed genome sequence of the H. somni isolate USDA-ARS-USMARC-63250 that may play an important role in affecting the biology of the organism. Sequencing the RNA from this isolate shows that most of the IVS is cleaved from the transcript, resulting in independent fragments of this structural rRNA that remain functional within the bacterial ribosome. The IVS lies between positions 1170 and 1278 bp of the 3,017-bp gene and exhibits self-complementarity between its 5' and 3' ends that predicts a stem-loop structure interrupting helix-45 in the transcribed 23S rRNA. Excision removes a 94-nucleotide (nt) stem-loop structure that displays an unusual 1-nt 3' end overhang instead of the more typical 2-nt overhang commonly observed at the ends of other excised IVS stem-loops. A comparison with genomes of other H. somni isolates indicates that this IVS is highly conserved, with 31 of 32 complete genomes having similar interruptions of canonical 23S rRNA genes. The potential biological effects of either the released IVS or the fragmentation of the functional 23S rRNA are unknown, but fragmentation may enhance rRNA degradation in ways that contribute to the regulation of gene expression. IMPORTANCE The genome biology underlying H. somni virulence, pathogenicity, environmental adaptability, and broad tissue tropism is understood poorly. We identified a novel H. somni 109-nt IVS stem-loop structure, of which the central portion is excised from the 23S rRNA transcript, resulting in the fragmentation of this rRNA in the H. somni isolate USDA-ARS-USMARC-63250 and the release of a 94-nt structured RNA of unknown function. We determined that this peculiar rRNA biology is widespread among sequenced H. somni isolates, suggesting it has importance to organism biology. The fragmented 23S rRNA molecules remain functional in the ribosome, given that the isolate grows in culture. The structured excised portion of the IVS, presumably due to the action of the endoribonuclease III, has an unusual 1-nt 3' end overhang. This newly discovered H. somni 23S rRNA fragmentation may enhance rRNA degradation providing a previously unrecognized avenue for regulating H. somni biological processes.


Assuntos
Sequências Repetidas Invertidas/genética , Conformação de Ácido Nucleico , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/genética , RNA Ribossômico 23S/genética , Animais , Sequência de Bases/genética , Bovinos , Doenças dos Bovinos/microbiologia , Íntrons/genética , RNA Bacteriano/genética , Infecções Respiratórias/microbiologia , Infecções Respiratórias/veterinária , Ribossomos/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA