RESUMO
Genomic instability arising from defective responses to DNA damage1 or mitotic chromosomal imbalances2 can lead to the sequestration of DNA in aberrant extranuclear structures called micronuclei (MN). Although MN are a hallmark of ageing and diseases associated with genomic instability, the catalogue of genetic players that regulate the generation of MN remains to be determined. Here we analyse 997 mouse mutant lines, revealing 145 genes whose loss significantly increases (n = 71) or decreases (n = 74) MN formation, including many genes whose orthologues are linked to human disease. We found that mice null for Dscc1, which showed the most significant increase in MN, also displayed a range of phenotypes characteristic of patients with cohesinopathy disorders. After validating the DSCC1-associated MN instability phenotype in human cells, we used genome-wide CRISPR-Cas9 screening to define synthetic lethal and synthetic rescue interactors. We found that the loss of SIRT1 can rescue phenotypes associated with DSCC1 loss in a manner paralleling restoration of protein acetylation of SMC3. Our study reveals factors involved in maintaining genomic stability and shows how this information can be used to identify mechanisms that are relevant to human disease biology1.
Assuntos
Instabilidade Genômica , Micronúcleos com Defeito Cromossômico , Animais , Humanos , Camundongos , Cromossomos/genética , Dano ao DNA , Instabilidade Genômica/genética , Fenótipo , Sirtuína 1 , Mutações Sintéticas LetaisRESUMO
New Pr1-xZrxO2-y oxides with x < 0.5 have been prepared by co-precipitation in basic medium and annealed under air at high temperatures (T≤ 1200 °C). Defined compositions with x = 0.02, 0.1, 0.2, 0.35, 0.40 and 0.5 have been characterized by XRD, Zr-K-edge EXAFS for the local structure, magnetic susceptibility measurements, and Pr LIII-edge XANES in order to identify the variation of the cell parameter and Zr local environment versus Zr content and Pr(n+) (4 < n < 3) oxidation states. The higher the Zr content, the lower the Pr valence state. The Zr amount stabilized in the distorted octahedral site is at the origin of the formation of defined compositions as discovered by Leroy Eyring et al. in the PrnO2n-2m series and the generation of oxygen vacancies stabilized in the fluorite-type network. TGA and TPR analyses help to follow the reduction properties under Ar/5% H2 and show high Pr reducible rates at low temperatures (T < 250 °C). The identification of the fluorite-type superstructure (SG: Ia3[combining macron]) of reduced compositions annealed at T = 900 °C under Ar/5% H2 shows the cationic and oxygen vacancy ordering. This feature plays a key role with Zr(4+) cations stabilized in flattened octahedral sites for the generation of oxygen vacancies and the stabilization of Pr(3+) in the reduced states.
RESUMO
By means of 27Al triple quantum Magic-Angle Spinning Nuclear Magnetic Resonance (3QMAS NMR) and 27Al[19F] WISE MAS NMR, we were able to detect three different Al-F sites on the surface of fluorinated gamma-alumina. Three 19F resonances at 9, 20, and 33 ppm (from C6F6) correlated to 27Al resonances in the octahedral range. While the positions of the maxima in the 27Al dimension were ill-defined due to the inherently low efficiency of the 27Al[19F] CPMAS process, the center of gravity of the lines shifted significantly upfield in that dimension with increasing wt.% F. Tentatively, these three resonances were assigned to (VI)Al(O(6-n)Fn) (n = 1, 2, 3) environments on the F/gamma-Al2O3 surface. At F contents above levels corresponding to the full fluorination of the gamma-Al2O3 surface, neoformation of an AlF3 x 3H2O phase was also evidenced with an 19F resonance at -8 ppm and with an 27Al resonance at -17 ppm.