Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomacromolecules ; 19(7): 2665-2672, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29617117

RESUMO

Synthesizing lignin-based copolymers would valorize a major coproduct stream from pulp and paper mills and biorefineries as well as reduce the dependence on petrochemical-based consumer goods. In this study, we used organosolv lignin isolated from hybrid poplar ( Populus trichocarpa × P. deltoides) to generate lignin-containing methacrylate hydrogels. The copolymer hydrogels were synthesized by first grafting 2-hydroxyethyl methacrylate (HEMA) onto lignin (OSLH) via esterification and then by free radical polymerization of OSLH with excess HEMA. The copolymer hydrogels were prepared with different stoichiometric ratios of OSLH (e.g., 0, 10, 20, and 40 wt %) with respect to HEMA. Copolymerization with OSLH led to an increase in cross-linking density, which in turn enhanced the hydrogel's material properties; we report up to 39% improvement in water retention, 20% increase in thermostability, and up to a 3 order increase in magnitude of the storage modulus ( G'). The copolymer's properties, such as water retention and glass transition temperature, could be tuned by altering the percent functionalization of lignin OH groups and the ratio of OSLH to HEMA.


Assuntos
Hidrogéis/síntese química , Lignina/análogos & derivados , Metacrilatos/química , Polimerização , Populus/química , Molhabilidade
2.
Int J Mol Sci ; 18(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671571

RESUMO

Lignin/lignin blends were used to improve fiber spinning, stabilization rates, and properties of lignin-based carbon fibers. Organosolv lignin from Alamo switchgrass (Panicum virgatum) and yellow poplar (Liriodendron tulipifera) were used as blends for making lignin-based carbon fibers. Different ratios of yellow poplar:switchgrass lignin blends were prepared (50:50, 75:25, and 85:15 w/w). Chemical composition and thermal properties of lignin samples were determined. Thermal properties of lignins were analyzed using thermogravimetric analysis and differential scanning calorimetry. Thermal analysis confirmed switchgrass and yellow poplar lignin form miscible blends, as a single glass transition was observed. Lignin fibers were produced via melt-spinning by twin-screw extrusion. Lignin fibers were thermostabilized at different rates and subsequently carbonized. Spinnability of switchgrass lignin markedly improved by blending with yellow poplar lignin. On the other hand, switchgrass lignin significantly improved thermostabilization performance of yellow poplar fibers, preventing fusion of fibers during fast stabilization and improving mechanical properties of fibers. These results suggest a route towards a 100% renewable carbon fiber with significant decrease in production time and improved mechanical performance.


Assuntos
Carbono/química , Lignina/química , Madeira/química , Fibra de Carbono , Espectroscopia de Ressonância Magnética , Resistência à Tração , Termodinâmica
3.
Hemoglobin ; 40(4): 257-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27225845

RESUMO

An asymptomatic toddler and his mother consistently demonstrated low transcutaneous pulse oximetry (SpO2) measurements, discordant with normal arterial blood gas analyses while breathing room air. Previous evaluations by medical teams were unable to identify an etiology of their perceived hypoxia. Further investigation revealed that the boy carried an abnormal variant, Hb Grifton or α87(F8)His→Pro; HBA1: c.263A > C (or HBA2), discovered on newborn screening, which was not suspected as the underlying cause of his abnormal pulse oximetry readings until an inpatient admission to our hospital for asymptomatic "hypoxia," where he was found to share these same characteristics with his mother. We showed that a difference in light absorption between the oxygenated Hb Grifton variant and oxygenated Hb A resulted in erroneous pulse oximetry values. This phenomenon has previously been reported in a handful of other variant Hbs. Astute clinical suspicion, in conjunction with laboratory testing leading to correct diagnoses of variant Hbs, may prevent expensive work-ups and unnecessary medical treatments for asymptomatic patients falsely presumed to be hypoxemic based on low pulse oximetry measurements.


Assuntos
Oximetria/normas , Oxiemoglobinas/análise , Adulto , Gasometria , Pré-Escolar , Erros de Diagnóstico , Feminino , Hemoglobinas Anormais/análise , Hemoglobinas Anormais/genética , Humanos , Hipóxia/diagnóstico , Masculino
4.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921905

RESUMO

Carbon quantum dots (CQDs) have been investigated for biomedical applications in medical imaging due to their fluorescent properties, overall long-term stability, and excellent cytocompatibility and biocompatibility. Lignin is an organic polymer in the tissues of woody plants. It is also considered a byproduct of the wood and pulp industries. Hence, it presents as a renewable source of carbon nanoparticles. In this study, we report the synthesis and material and biological characterization of two colloidal suspensions of CQDs in water derived from lignin-based carbon. One was the native form of CQDs derived from lignin carbon, and the second was doped with nitrogen to evaluate material differences. Material characterization was carried out using various commonly used techniques, including Fourier transform infrared spectroscopy (FTIR), emission and absorbance spectra, zeta potential, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Thin films of CQDs were formed on glass and silicon substrates to assess the in vitro cytocompatibility with human mesenchymal stem cells (hMSCs). Observations suggest that the two forms of CQDs promote cell attachment within 24 h and sustain it for at least 7 days. The overall structure and shape of cells suggest a lack of any adverse or toxic effects of CQDs. The data lay down the novel foundation to support the use of lignin-derived CQDs in tissue engineering applications.

5.
iScience ; 26(12): 108455, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077126

RESUMO

Wood, with its inherent hierarchical structure, presents opportunities for creating eco-friendly and cost-effective alternatives to petroleum-based plastics. We introduced a top-down and polymer-free method for engineering natural balsa wood into transparent wood film, demonstrating its potential use in food packaging windows. The wood was delignified and then proceeded with 2,2,6,6-tetramethyl-1-piperidinyloxy oxidation to soften the wood structure and introduce carboxyl groups. A robust and transparent wood film was produced by drying the wood under ambient condition without the need for additional polymers or mechanical force. Curcumin was also integrated into the wood using vacuum impregnation. The functionalized wood film with curcumin (WFC) exhibited a distinguishable redness shift in alkaline conditions. We then applied the WFC as an intelligent food packaging window to sense the freshness of shrimp based on the pH-responsive color change. This study provides a simple and scalable approach for developing sustainable and smart food packaging using wood.

6.
Blood ; 115(6): 1194-203, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007546

RESUMO

The t(10;11) translocation results in a CALM-AF10 fusion gene in a subset of leukemia patients. Expression of a CALM-AF10 transgene results in leukemia, with prolonged latency and incomplete penetrance, suggesting that additional events are necessary for leukemic transformation. CALM-AF10 mice infected with the MOL4070LTR retrovirus developed acute leukemia, and ligation-mediated polymerase chain reaction was used to identify retroviral insertions at 19 common insertion sites, including Zeb2, Nf1, Mn1, Evi1, Ift57, Mpl, Plag1, Kras, Erg, Vav1, and Gata1. A total of 26% (11 of 42) of the mice had retroviral integrations near Zeb2, a transcriptional corepressor leading to overexpression of the Zeb2-transcript. A total of 91% (10 of 11) of mice with Zeb2 insertions developed B-lineage acute lymphoblastic leukemia, suggesting that Zeb2 activation promotes the transformation of CALM-AF10 hematopoietic precursors toward B-lineage leukemias. More than half of the mice with Zeb2 integrations also had Nf1 integrations, suggesting cooperativity among CALM-AF10, Zeb2, and Ras pathway mutations. We searched for Nras, Kras, and Ptpn11 point mutations in the CALM-AF10 leukemic mice. Three mutations were identified, all of which occurred in mice with Zeb2 integrations, consistent with the hypothesis that Zeb2 and Ras pathway activation promotes B-lineage leukemic transformation in concert with CALM-AF10.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia Experimental/genética , Mutagênese Insercional , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteínas Repressoras/metabolismo , Retroviridae/genética , Animais , Southern Blotting , Western Blotting , Proliferação de Células , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Imunofenotipagem , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Leucemia de Células B/patologia , Leucemia Experimental/metabolismo , Leucemia Experimental/patologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Homeobox 2 de Ligação a E-box com Dedos de Zinco , Proteínas ras/genética
7.
ChemistryOpen ; 11(2): e202100220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35174668

RESUMO

Carbonized lignin has been proposed as a sustainable and domestic source of activated, amorphous, graphitic, and nanostructured carbon for many industrial applications as the structure can be tuned through processing conditions. However, the inherent variability of lignin and its complex physicochemical structure resulting from feedstock and pulping selection make the Process-Structure-Property-Performance (PSPP) relationships hard to define. In this work, radial distribution functions (RDFs) from synchrotron X-ray and neutron scattering of lignin-based carbon composites (LBCCs) are investigated using the Hierarchical Decomposition of the Radial Distribution Function (HDRDF) modelling method to characterize the local atomic environment and develop quantitative PSPP relationships. PSPP relationships for LBCCs defined by this work include crystallite size dependence on lignin feedstock as well as increasing crystalline volume fraction, nanoscale composite density, and crystallite size with increasing reduction temperature.


Assuntos
Grafite , Lignina , Carbono/química , Lignina/química , Temperatura
8.
Polymers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34685231

RESUMO

Despite recent successes in incorporating lignin into photoactive resins, lignin photo-properties can be detrimental to its application in UV-curable photopolymers, especially in specialized engineered resins for use in stereolithography printing. We report on chemical modification techniques employed to reduce UV absorption by lignin and the resulting mechanical, thermal, and cure properties of these modified lignin materials. Lignin was modified using reduction and acylation reactions and incorporated into a 3D printable resin formulation. UV-Vis absorption at the 3D printing range of 405 nm was reduced in all modified lignins compared to the unmodified sample by 25% to ≥ 60%. Resins made with the modified lignins showed an increase in stiffness and strength with lower thermal stability. Studying these techniques is an important step in developing lignin for use in UV-curing applications and further the effort to valorize lignin towards commercial use.

9.
J Orthop Res ; 39(3): 516-524, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32844515

RESUMO

The objective of this study was to evaluate the ex vivo effect of cyclic loading on the stability of screws placed in locking plates used to bridge segmental bone defects. The primary interface stability was assessed using peak reverse torque. Eighteen, 8-hole stainless-steel 4.5 mm locking plates and 4.0-mm self-tapping locking-head screws were used to stabilize 40-mm segmental defects in goat tibiae. Treatment groups included control constructs without cyclic loading (n = 6) and constructs tested to 5000 (n = 6) and 10,000 cycles (n = 6) of 600 N compressive axial loading. The insertion of all screws was standardized to 400 N-cm insertion torque. Peak reverse torque was measured immediately after screw placement (control), or after the completion of the respective loading cycles. The difference between treatment groups was compared using univariate analysis of variance. The analysis revealed a significant difference in peak reverse torque of the screws among the treatment groups (p = .000). The mean reverse torque values equaled 343.5 ± 18.3 N-cm for non-cycled controls, 303.3 ± 25.9 and 296.0 ± 42.9 N-cm after 5000 and 10,000 cycles, respectively. Among all treatment groups, screws placed in the distal bone segment tended to have lesser peak reverse torque reduction than those placed in the proximal segment and the difference was proportional to the number of cycles (p = .562; p = .255; p = .013 in control, and after 5000 and 10,000 cycles, respectively). Cyclic loading may have a negative effect on the primary stability of screws placed in locking plate constructs used to bridge segmental bone defects and could contribute to the risk of screw loosening.


Assuntos
Placas Ósseas , Parafusos Ósseos , Animais , Força Compressiva , Cabras , Teste de Materiais , Torque , Suporte de Carga
10.
ACS Omega ; 6(30): 19883-19892, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34368575

RESUMO

Hard carbons are the primary candidate for the anode of next-generation sodium-ion batteries for large-scale energy storage, as they are sustainable and can possess high charge capacity and long cycle life. These properties along with diffusion rates and ion storage mechanisms are highly dependent on nanostructures. This work uses reactive molecular dynamics simulations to examine lithium and sodium ion storage mechanisms and diffusion in lignin-based hard carbon model systems with varying nanostructures. It was found that sodium will preferentially localize on the surface of curved graphene fragments, while lithium will preferentially bind to the hydrogen dense interfaces of crystalline and amorphous carbon domains. The ion storage mechanisms are explained through ion charge and energy distributions in coordination with snapshots of the simulated systems. It was also revealed that hard carbons with small crystalline volume fractions and moderately sized sheets of curved graphene will yield the highest sodium-ion diffusion rates at ∼10-7 cm2/s. Self-diffusion coefficients were determined by mean square displacement of ions in the models with extension through a confined random walk theory.

11.
ACS Omega ; 6(11): 7851-7861, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33778297

RESUMO

This work adopts an efficient chemical-wet method to build a three-dimensional (3D) carbon composite as an electrode material for high-performance supercapacitors (SCs). Carbon dots (CDs), prepared by thermal pyrolysis of citric acid and urea under microwaves at 280 °C, are homogeneously coated onto lignin-based activated carbons (ACs), thus forming the 3D composites possessing an interior surface decorated with CD binding sites. Benefiting from the hydrophilicity and ultrafine size of CDs, the affinity of the electrode surface toward aqueous electrolytes is significantly improved with the addition of CDs, leading to the enhanced effective surface area (i.e., abundant electroactive sites) and a decreased ionic diffusion path. The capacitance of the SCs is improved from 125.8 to 301.7 F g-1 with CD addition. The SC with CD addition possesses improved cycle stability with a coulombic efficiency around 100% after 3000 cycles. After cycling, the ion diffusion coefficient of the CD@AC-11 electrode is enhanced by 25.5 times as compared to that of the pristine AC one. This unique and robust carbon framework can be utilized for engineering the desired pore structure and micropore/mesopore fraction within the AC electrodes. This strategy of CD@AC electrodes demonstrates a promising route for using renewable porous carbon materials in advanced energy-storage devices.

12.
Am J Vet Res ; 81(2): 116-121, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31985286

RESUMO

OBJECTIVE: To determine the effects of 2 augmentation techniques on the mechanical properties of titanium cannulated bone screws. SAMPLE: 33 titanium cannulated bone screws (outer diameter, 6.5 mm; guide channel diameter, 3.6 mm). PROCEDURES: 11 screws were allocated to each of 3 groups. The guide channel of each screw was filled with polymethyl methacrylate bone cement alone (OCS group) or in combination with a 3.2-mm-diameter orthopedic pin (PCS group) or remained unmodified (control group) before mechanical testing. Each screw underwent a single-cycle 3-point bending test to failure with a monotonic loading rate of 2.5 mm/min. Failure was defined as an acute decrease in resistance to load of ≥ 20% or a bending deformation of 15 mm. Mechanical properties were determined for each screw and compared among the 3 groups. RESULTS: All screws in the control and OCS groups and 1 screw in the PCS group broke during testing; a 15-mm bending deformation was achieved for the remaining 10 screws in the PCS group. Maximum load and load at failure differed significantly among the 3 groups. Stiffness and load at yield for the PCS group were significantly greater than those for the control and OCS groups but did not differ between the control and OCS groups. CONCLUSIONS AND CLINICAL RELEVANCE: Use of bone cement and an orthopedic pin to fill the guide channel of cannulated screws significantly increased the strength of the construct, but ex vivo and in vivo studies are necessary before this augmentation technique can be recommended for clinical patients.


Assuntos
Parafusos Ósseos , Titânio , Animais , Fenômenos Biomecânicos , Cimentos Ósseos , Polimetil Metacrilato
13.
Front Surg ; 7: 601244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33409291

RESUMO

The interface between a surgical implant and tissue consists of a complex and dynamic environment characterized by mechanical and biological interactions between the implant and surrounding tissue. The implantation process leads to injury which needs to heal over time and the rapidity of this process as well as the property of restored tissue impact directly the strength of the interface. Bleeding is the first and most relevant step of the healing process because blood provides growth factors and cellular material necessary for tissue repair. Integration of the implants placed in poorly vascularized tissue such as articular cartilage is, therefore, more challenging than compared with the implants placed in well-vascularized tissues such as bone. Bleeding is followed by the establishment of a provisional matrix that is gradually transformed into the native tissue. The ultimate goal of implantation is to obtain a complete integration between the implant and tissue resulting in long-term stability. The stability of the implant has been defined as primary (mechanical) and secondary (biological integration) stability. Successful integration of an implant within the tissue depends on both stabilities and is vital for short- and long-term surgical outcomes. Advances in research aim to improve implant integration resulting in enhanced implant and tissue interface. Numerous methods have been employed to improve the process of modifying both stability types. This review provides a comprehensive discussion of current knowledge regarding implant-tissue interfaces within bone and cartilage as well as novel approaches to strengthen the implant-tissue interface. Furthermore, it gives an insight into the current state-of-art biomechanical testing of the stability of the implants. Current knowledge reveals that the design of the implants closely mimicking the native structure is more likely to become well integrated. The literature provides however several other techniques such as coating with a bioactive compound that will stimulate the integration and successful outcome for the patient.

14.
RSC Adv ; 9(54): 31202-31211, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527949

RESUMO

In this report we describe repurposing of recycled polyesters as a matrix for lignin-a biorefinery coproduct that is used as a solid fuel and needs to find higher value-to make sustainable high-performance thermoplastic materials. Brittle lignin oligomers, isolated from plant biomass, require a low-melting host polymer matrix to form a rigid and tough renewable material. We demonstrate controlled lignin dispersion and interfacial interactions in softened recycled polyethylene terephthalate (PET) using a simple solvent-free, melt-blending technique. To avoid lignin degradation and devolatilization during melt processing, it was thermally treated. Tall oil fatty acid was used to enable PET processability at low enough temperature to accommodate lignin without charring. Chemical analysis reveals reduction of aliphatic hydroxyl content from 2 mmol g-1 to 1.63 mmol g-1 and an increase of total phenolic hydroxyl moieties from 5.86 to 6.64 mmol g-1 and cleavage of ß-O-4 ether linkages due to thermal treatment. Structural transformation of lignin macromolecules during heat treatment was further confirmed by an increase in molar mass and improved thermal stability. Interfacial interactions between lignin and PET were assessed from mechanical properties and thermal analyses. Thermal treatment not only helps to improve the stability of lignin but also slightly reduces the size of the dispersed lignin domains via favored interfacial interactions with the PET matrix. These methods improve mechanical properties of the material. Further, incorporation of lignin in the plasticized PET matrix increases the ductility in the blended products. The method we discuss here utilizes industrial wastes and co-products, and it does not require solvent or toxic chemicals during the reactive extrusion process that yields complete conversion to products.

15.
Sci Total Environ ; 690: 410-416, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299573

RESUMO

Mercury (Hg) contamination of soils and sediments impacts numerous environments worldwide and constitutes a challenging remediation problem. In this study, we evaluate the impact of dissolved organic matter (DOM) on the effectiveness of eight sorbent materials considered for Hg remediation in soils and sediments. The materials include both engineered and unmodified materials based on carbon, clays, mesoporous silica and a copper alloy. Initially, we investigated the kinetics of Hg(II) complexation with DOM for a series of Hg:DOM ratios. Steady-state Hg-DOM complexation occurred within 48 to 120 h, taking longer time at higher Hg:DOC (dissolved organic carbon) molar ratios. In subsequent equilibrium experiments, Hg(II) was equilibrated with DOM at a defined Hg:DOC molar ratio (2.4 ·â€¯10-6) for 170 h and used in batch experiments to determine the effect of DOM on Hg partition coefficients and sorption isotherms by comparing Hg(II) and Hg-DOM. Hg sorption capacities of all sorbents were severely limited in the presence of DOM as a competing ligand. Thiol-SAMMS®, SediMite™ and pine biochar were most effective in reducing Hg concentrations. While pine biochar and lignin-derived carbon processed at high temperatures released negligible amounts of anions into solution, leaching of sulfate and chloride was observed for most engineered sorbent materials. Sulfate may stimulate microbial communities harboring sulfate reducing bacteria, which are considered one of the primary drivers of microbial mercury methylation in the environment. The results highlight potential challenges arising from the application of sorbents for Hg remediation in the field.

16.
Clin Pediatr (Phila) ; 47(9): 907-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18539869

RESUMO

Methods A prospective, randomized double-blind placebo control study comparing the efficacy of acetaminophen to acetaminophen alternated with ibuprofen in 38 healthy outpatient children 6 months to 6 years presenting to the outpatient clinic with fever >38 degrees C was conducted. Temperatures were recorded at 0, 3, 4, 5, and 6 hours. Side effect diaries and parental perception of efficacy were filled out hourly by parents.Results There were no significant differences in temperature between the 2 groups at times 0, 3, and 6 hours. The alternating group had significantly lower mean temperatures at both 4 hours (38.0 degrees C vs 37.4 degrees C; P = .05) and 5 hours (37.1 degrees C vs 37.9 degrees C; P = .0032). Parents did not perceive any difference in fever control between the groups.Conclusions An alternating regimen of acetaminophen with ibuprofen significantly decreased fever at 4 and 5 hours compared with acetaminophen alone. However, parents did not perceive a difference in efficacy.


Assuntos
Acetaminofen/administração & dosagem , Analgésicos não Narcóticos/administração & dosagem , Febre/tratamento farmacológico , Ibuprofeno/administração & dosagem , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Masculino , Placebos , Estudos Prospectivos , Resultado do Tratamento
17.
ACS Appl Mater Interfaces ; 10(42): 36456-36463, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30256091

RESUMO

Generating compatible and competitive materials that are environmentally sustainable and economically viable is paramount for the success of additive manufacturing using renewable materials. We report the successful application of renewable, modified lignin-containing photopolymer resins in a commercial stereolithography system. Resins were fabricated within operable ranges for viscosity and cure properties, using up to 15% modified lignin by weight. A 4-fold increase in ductility in cured parts with higher lignin concentration is noted compared to commercial stereolithography resins. Excellent print quality was seen in modified lignin resins, with good layer fusion, high surface definition, and visual clarity. These materials can be used to generate new products for additive manufacturing applications and help fill vacant material property spaces, where ductility, sustainability, and application costs are critical.

18.
ACS Omega ; 3(9): 10709-10715, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459188

RESUMO

Polyethylene terephthalate (PET) waste often contains a large amount of thermally unstable contaminants and additives that negatively impacts processing. A reduced processing temperature is desired. In this work, we report using a renewably sourced tall oil fatty acid (TOFA) as a modifier for recycled PET. To that end, PET was compounded with TOFA at different concentrations and extruded at 240 °C. Phase transition behaviors characterized by thermal and dynamic mechanical analyses exhibit shifts in the melting and recrystallization temperatures of PET to lower temperatures and depression of glass transition temperature from 91 to 65 °C. Addition of TOFA also creates crystal-phase imperfection that slows recrystallization, an important processing parameter. Changes in the morphology of plasticized PET reduces and stabilizes the melt viscosity at 240 and 250 °C. Melt-spun, undrawn continuous filaments of diameter 36-46 µm made from these low-melting PET exhibit 29-38 MPa tensile strength, 2.7-2.8 GPa tensile modulus, and 20-36% elongation. These results suggest a potential path for reusing waste PET as high-performance polymeric fibers.

19.
Sci Adv ; 3(5): e1603301, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28560350

RESUMO

The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

20.
Appl Spectrosc ; 60(8): 898-905, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16925926

RESUMO

Recent investigations of wood plastic composites have revealed a detrimental effect of using lubricant systems in production. This includes nullifying part or all of the mechanical benefit of using a polar compatibilizer, maleic anhydride polypropylene (MAPP), in the composite formulation. This investigation utilizes lubricants labeled with deuterium in conjunction with Fourier transform infrared (FT-IR) spectroscopy to allow for the separation of individual lubricants from all other material constituents. All of the deuterium labeled lubricants, used without MAPP, revealed their expulsion from the wood interface during crystallization. MAPP coupling agent was found to exist near the wood, but it is unclear if any covalent bonding with the hydroxyl functionality on the wood surface occurred. The addition of zinc stearate lubricants appears to nullify the activity of the anhydride functionality near the wood surface as evidenced by a shift in the FT-IR spectra to the hydrolyzed form of the coupling agent. Most of the additives collect at the edges of the spherulites in mostly amorphous regions of the material. The consequence of this morphology may be a weak interface between crystallites.


Assuntos
Polipropilenos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Madeira/química , Deutério , Análise de Fourier , Lubrificação , Anidridos Maleicos/química , Polímeros/química , Estearatos/química , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA