Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(6)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35639613

RESUMO

The cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts.


Assuntos
Cafeína , Xenobióticos , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Mamíferos/metabolismo , Vertebrados/genética , Vertebrados/metabolismo
2.
J Biol Chem ; 295(17): 5640-5653, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156703

RESUMO

Mammalian cytochrome P450 enzymes often metabolize many pharmaceuticals and other xenobiotics, a feature that is valuable in a biotechnology setting. However, extant P450 enzymes are typically relatively unstable, with T50 values of ∼30-40 °C. Reconstructed ancestral cytochrome P450 enzymes tend to have variable substrate selectivity compared with related extant forms, but they also have higher thermostability and therefore may be excellent tools for commercial biosynthesis of important intermediates, final drug molecules, or drug metabolites. The mammalian ancestor of the cytochrome P450 1B subfamily was herein characterized structurally and functionally, revealing differences from the extant human CYP1B1 in ligand binding, metabolism, and potential molecular contributors to its thermostability. Whereas extant human CYP1B1 has one molecule of α-naphthoflavone in a closed active site, we observed that subtle amino acid substitutions outside the active site in the ancestor CYP1B enzyme yielded an open active site with four ligand copies. A structure of the ancestor with 17ß-estradiol revealed only one molecule in the active site, which still had the same open conformation. Detailed comparisons between the extant and ancestor forms revealed increases in electrostatic and aromatic interactions between distinct secondary structure elements in the ancestral forms that may contribute to their thermostability. To the best of our knowledge, this represents the first structural evaluation of a reconstructed ancestral cytochrome P450, revealing key features that appear to contribute to its thermostability.


Assuntos
Citocromo P-450 CYP1B1/química , Sequência de Aminoácidos , Animais , Benzoflavonas/metabolismo , Cristalografia por Raios X , Citocromo P-450 CYP1B1/metabolismo , Estabilidade Enzimática , Estradiol/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Temperatura
3.
Biochim Biophys Acta Proteins Proteom ; 1866(1): 97-115, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28822812

RESUMO

Cytochromes P450 are found throughout the biosphere in a wide range of environments, serving a multitude of physiological functions. The ubiquity of the P450 fold suggests that it has been co-opted by evolution many times, and likely presents a useful compromise between structural stability and conformational flexibility. The diversity of substrates metabolized and reactions catalyzed by P450s makes them attractive starting materials for use as biocatalysts of commercially useful reactions. However, process conditions impose different requirements on enzymes to those in which they have evolved naturally. Most natural environments are relatively mild, and therefore most P450s have not been selected in Nature for the ability to withstand temperatures above ~40°C, yet industrial processes frequently require extended incubations at much higher temperatures. Thus, there has been considerable interest and effort invested in finding or engineering thermostable P450 systems. Numerous P450s have now been identified in thermophilic organisms and analysis of their structures provides information as to mechanisms by which the P450 fold can be stabilized. In addition, protein engineering, particularly by directed or artificial evolution, has revealed mutations that serve to stabilize particular mesophilic enzymes of interest. Here we review the current understanding of thermostability as it applies to the P450 fold, gleaned from the analysis of P450s characterized from thermophilic organisms and the parallel engineering of mesophilic forms for greater thermostability. We then present a perspective on how this information might be used to design stable P450 enzymes for industrial application. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Sistema Enzimático do Citocromo P-450/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Archaea/genética , Bactérias/genética , Biocatálise , Estabilidade Enzimática , Expressão Gênica , Humanos , Modelos Moleculares , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA