Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Ann Neurol ; 95(2): 249-259, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37789559

RESUMO

OBJECTIVE: Tau pathology is recognized as a primary contributor to neurodegeneration and clinical symptoms in Alzheimer's disease (AD). This study aims to localize the early tau pathology in cognitively normal older people that is predictive of subsequent neurodegeneration and memory decline, and delineate factors underlying tau-related memory decline in individuals with and without ß-amyloid (Aß). METHODS: A total of 138 cognitively normal older individuals from the Berkeley Aging Cohort Study underwent 11 C-Pittsburgh Compound-B (PiB) positron emission tomography (PET) to determine Aß positivity and 18 F-Flortaucipir (FTP) PET to measure tau deposition, with prospective cognitive assessments and structural magnetic resonance imaging. Voxel-wise FTP analyses examined associations between baseline tau deposition and longitudinal memory decline, longitudinal hippocampal atrophy, and longitudinal cortical thinning in AD signature regions. We also examined whether hippocampal atrophy and cortical thinning mediate tau effects on future memory decline. RESULTS: We found Aß-dependent tau associations with memory decline in the entorhinal and temporoparietal regions, Aß-independent tau associations with hippocampal atrophy within the medial temporal lobe (MTL), and that widespread tau was associated with mean cortical thinning in AD signature regions. Tau-related memory decline was mediated by hippocampal atrophy in Aß- individuals and by mean cortical thinning in Aß+ individuals. INTERPRETATION: Our results suggest that tau may affect memory through different mechanisms in normal aging and AD. Early tau deposition independent of Aß predicts subsequent hippocampal atrophy that may lead to memory deficits in normal older individuals, whereas elevated cortical tau deposition is associated with cortical thinning that may lead to more severe memory decline in AD. ANN NEUROL 2024;95:249-259.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Estudos de Coortes , Proteínas tau/metabolismo , Afinamento Cortical Cerebral , Estudos Prospectivos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Transtornos da Memória/diagnóstico por imagem , Transtornos da Memória/etiologia , Atrofia , Disfunção Cognitiva/metabolismo , Imageamento por Ressonância Magnética
2.
Ann Neurol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747315

RESUMO

OBJECTIVE: Cross-sectional definitions of successful cognitive aging have been widely utilized, but longitudinal measurements can identify people who do not decline. We performed this study to contrast maintenance with declining trajectories, including clinical conversion. METHODS: We included baseline cognitively unimpaired Alzheimer's Disease Neuroimaging Initiative participants with 3 or more cognitive testing sessions (n = 539, follow-up 6.1 ± 3.5 years) and calculated slopes of an episodic memory composite (MEM) to classify them into two groups: maintainers (slope ≥ 0) and decliners (slope < 0). Within decliners, we examined a subgroup of individuals who became clinically impaired during follow-up. These groups were compared on baseline characteristics and cognitive performance, as well as both cross-sectional and longitudinal Alzheimer disease (AD) biomarker measures (beta-amyloid [Aß], tau, and hippocampal volume). RESULTS: Forty-one percent (n = 221) of the cohort were MEM maintainers, and 33% (n = 105) of decliners converted to clinical impairment during follow-up. Compared to those with superior baseline scores, maintainers had lower education and were more likely to be male. Maintainers and decliners did not differ on baseline MEM scores, but maintainers did have higher non-MEM cognitive scores. Maintainers had lower baseline global Aß, lower tau pathology, and larger hippocampal volumes than decliners, even after removing converters. There were no differences in rates of change of any AD biomarkers between any cognitive trajectory groups except for a higher rate of hippocampal atrophy in clinical converters compared to maintainers. INTERPRETATION: Using longitudinal data to define cognitive trajectory groups reduces education and sex bias and reveals the prognostic importance of early onset of accumulation of AD pathology. ANN NEUROL 2024.

3.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602736

RESUMO

Tau pathology is associated with cognitive impairment in both aging and Alzheimer's disease, but the functional and structural bases of this relationship remain unclear. We hypothesized that the integrity of behaviorally meaningful functional networks would help explain the relationship between tau and cognitive performance. Using resting state fMRI, we identified unique networks related to episodic memory and executive function cognitive domains. The episodic memory network was particularly related to tau pathology measured with positron emission tomography in the entorhinal and temporal cortices. Further, episodic memory network strength mediated the relationship between tau pathology and cognitive performance above and beyond neurodegeneration. We replicated the association between these networks and tau pathology in a separate cohort of older adults, including both cognitively unimpaired and mildly impaired individuals. Together, these results suggest that behaviorally meaningful functional brain networks represent a functional mechanism linking tau pathology and cognition.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Cognição , Função Executiva , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/diagnóstico por imagem
4.
J Neurosci ; 43(38): 6553-6563, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37604690

RESUMO

Large-scale brain networks undergo widespread changes with older age and in neurodegenerative diseases such as Alzheimer's disease (AD). Research in young adults (YA) suggest that the underlying functional architecture of brain networks remains relatively consistent between rest and task states. However, it remains unclear whether the same is true in aging and to what extent any changes may be related to accumulation of AD pathology such as ß-amyloid (Aß) and tau. Here, we examined age-related differences in functional connectivity (FC) between rest and an object-scene mnemonic discrimination task using fMRI in young and older adults (OA; both females and males). We used an a priori episodic memory network (EMN) parcellation scheme associated with object and scene processing, that included anterior-temporal regions and posterior-medial regions. We also used positron emission topography to measure Aß and tau in older adults. The correlation between rest and task FC (i.e., FC similarity) was reduced in older compared with younger adults. Older adults with lower FC similarity in EMN had higher levels of tau in the same EMN regions and performed worse during object, but not scene, trials during the fMRI task. These findings link AD pathology, particularly tau, to a less stable functional architecture in memory networks. They also suggest that smaller changes in FC organization between rest and task states may facilitate better performance in older age. Interpretations are limited by methodological factors related to different acquisition directions and durations between rest and task scans.SIGNIFICANCE STATEMENT The brain's large-scale network organization is relatively consistent between rest and task states in young adults (YA). We found that memory networks in older adults (OA) were less correlated between rest and (memory) task states compared with young adults. Older adults with less correlated brain networks also had higher levels of Alzheimer's disease (AD) pathology in the same regions, suggesting that a less stable network architecture may reflect the early evolution of AD. Older adults with less correlated brain networks also performed worse during the memory task suggesting that more similar network organization between rest and task states may facilitate better performance in older age.


Assuntos
Doença de Alzheimer , Memória Episódica , Feminino , Masculino , Adulto Jovem , Humanos , Idoso , Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Envelhecimento , Peptídeos beta-Amiloides
5.
Alzheimers Dement ; 20(1): 341-355, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37614157

RESUMO

INTRODUCTION: There is no consensus on either the definition of successful cognitive aging (SA) or the underlying neural mechanisms. METHODS: We examined the agreement between new and existing definitions using: (1) a novel measure, the cognitive age gap (SA-CAG, cognitive-predicted age minus chronological age), (2) composite scores for episodic memory (SA-EM), (3) non-memory cognition (SA-NM), and (4) the California Verbal Learning Test (SA-CVLT). RESULTS: Fair to moderate strength of agreement was found between the four definitions. Most SA groups showed greater cortical thickness compared to typical aging (TA), especially in the anterior cingulate and midcingulate cortices and medial temporal lobes. Greater hippocampal volume was found in all SA groups except SA-NM. Lower entorhinal 18 F-Flortaucipir (FTP) uptake was found in all SA groups. DISCUSSION: These findings suggest that a feature of SA, regardless of its exact definition, is resistance to tau pathology and preserved cortical integrity, especially in the anterior cingulate and midcingulate cortices. HIGHLIGHTS: Different approaches have been used to define successful cognitive aging (SA). Regardless of definition, different SA groups have similar brain features. SA individuals have greater anterior cingulate thickness and hippocampal volume. Lower entorhinal tau deposition, but not amyloid beta is related to SA. A combination of cortical integrity and resistance to tau may be features of SA.


Assuntos
Doença de Alzheimer , Envelhecimento Cognitivo , Disfunção Cognitiva , Humanos , Giro do Cíngulo/metabolismo , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Envelhecimento/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons , Disfunção Cognitiva/patologia , Doença de Alzheimer/patologia
6.
Alzheimers Dement ; 20(4): 2526-2537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38334195

RESUMO

INTRODUCTION: Amyloid beta (Aß) and tau pathology are cross-sectionally associated with atrophy and cognitive decline in aging and Alzheimer's disease (AD). METHODS: We investigated relationships between concurrent longitudinal measures of Aß (Pittsburgh compound B [PiB] positron emission tomography [PET]), tau (flortaucipir [FTP] PET), atrophy (structural magnetic resonance imaging), episodic memory (EM), and non-memory (NM) in 78 cognitively healthy older adults (OA). RESULTS: Entorhinal FTP change was correlated with EM decline regardless of Aß, but meta-temporal FTP and global PiB change were only associated with EM and NM decline in Aß+ OA. Voxel-wise analyses revealed significant associations between temporal lobe FTP change and EM decline in all groups. PiB and FTP change were not associated with structural change, suggesting a functional or microstructural mechanism linking these measures to cognitive decline. DISCUSSION: Our results show that longitudinal Aß is linked to cognitive decline only in the presence of elevated Aß, but longitudinal temporal lobe tau is associated with memory decline regardless of Aß status. HIGHLIGHTS: Entorhinal tau change was associated with memory decline in older adults (OA), regardless of amyloid beta (Aß). Greater meta-region of interest (ROI) tau change correlated with memory decline in Aß+ OA. Voxel-wise temporal tau change correlated with memory decline, regardless of Aß. Meta-ROI tau and global amyloid change correlated with non-memory change in Aß+ OA. Tau and amyloid accumulation were not associated with structural change in OA.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Envelhecimento/patologia , Amiloide , Peptídeos beta-Amiloides , Atrofia , Disfunção Cognitiva/diagnóstico por imagem , Imageamento por Ressonância Magnética , Transtornos da Memória , Tomografia por Emissão de Pósitrons , Proteínas tau
7.
Alzheimers Dement ; 20(3): 2113-2127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241084

RESUMO

INTRODUCTION: Abnormal amyloid-beta (Aß) and tau deposition define Alzheimer's Disease (AD), but non-elevated tau is relatively frequent in patients on the AD pathway. METHODS: We examined characteristics and regional patterns of 397 Aß+ unimpaired and impaired individuals with low tau (A+T-) in relation to their higher tau counterparts (A+T+). RESULTS: Seventy-one percent of Aß+ unimpaired and 42% of impaired Aß+ individuals were categorized as A+T- based on global tau. In impaired individuals only, A+T- status was associated with older age, male sex, and greater cardiovascular risk. α-synuclein was linked to poorer cognition, particularly when tau was low. Tau burden was most frequently elevated in a common set of temporal regions regardless of T+/T- status. DISCUSSION: Low tau is relatively common in patients on the AD pathway and is linked to comorbidities that contribute to impairment. These findings have implications for the selection of individuals for Aß- and tau-modifying therapies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Masculino , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cognição , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Feminino
8.
Alzheimers Dement ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962867

RESUMO

INTRODUCTION: Amyloid positron emission tomography (PET) acquisition timing impacts quantification. METHODS: In florbetaben (FBB) PET scans of 245 adults with and without cognitive impairment, we investigated the impact of post-injection acquisition time on Centiloids (CLs) across five reference regions. CL equations for FBB were derived using standard methods, using FBB data collected between 90 and 110 min with paired Pittsburgh compound B data. Linear mixed models and t-tests evaluated the impact of acquisition time on CL increases. RESULTS: CL values increased significantly over the scan using the whole cerebellum, cerebellar gray matter, and brainstem as reference regions, particularly in amyloid-positive individuals. In contrast, CLs based on white matter-containing reference regions decreased across the scan. DISCUSSION: The quantification of CLs in FBB PET imaging is influenced by both the overall scan acquisition time and the choice of reference region. Standardized acquisition protocols or the application of acquisition time-specific CL equations should be implemented in clinical protocols. HIGHLIGHTS: Acquisition timing affects florbetaben positron emission tomography (PET) scan quantification, especially in amyloid-positive participants. The impact of acquisition timing on quantification varies across common reference regions. Consistent acquisitions and/or appropriate post-injection adjustments are needed to ensure comparability of PET data.

9.
J Neurosci ; 42(7): 1352-1361, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34965972

RESUMO

Mechanisms underlying the initial accumulation of tau pathology across the human brain are largely unknown. We examined whether baseline factors including age, amyloid-ß (Aß), and neural activity predicted longitudinal tau accumulation in temporal lobe regions that reflect distinct stages of tau pathogenesis. Seventy cognitively normal human older adults (77 ± 6 years, 59% female) received two or more 18F-flortaucipir (FTP) and 11C-Pittsburgh Compound B (PiB) PET scans (mean follow-up, 2.5 ± 1.1 years) to quantify tau and (Aß). Linear mixed-effects models were used to calculate the slopes of FTP change in entorhinal cortex (EC), parahippocampal cortex (PHC), and inferior temporal gyrus (IT), and slopes of global PiB change. Thirty-seven participants underwent functional MRI to measure baseline activation. Older age predicted EC tau accumulation, and baseline EC tau levels predicted subsequent tau accumulation in EC and PHC. In IT, however, baseline EC tau interacted with Aß to predict IT tau accumulation. Higher baseline local activation predicted tau accumulation within EC and PHC, and higher baseline hippocampal activation predicted EC tau accumulation. Our findings indicate that factors predicting tau accumulation vary as tau progresses through the temporal lobe. Older age is associated with initial tau accumulation in EC, while baseline EC tau and neural activity drive tau accumulation within medial temporal lobe. Aß subsequently facilitates tau spread from medial to lateral temporal lobe. Our findings elucidate potential drivers of tau accumulation and spread in aging, which are critical for understanding Alzheimer's disease pathogenesis.SIGNIFICANCE STATEMENT To further understand the mechanisms leading to tau pathogenesis and spread, we tested whether baseline factors such as age, amyloid-ß pathology, and activation predicted longitudinal tau accumulation in cognitively normal older adults. We found that distinct mechanisms contribute to tau accumulation as tau progresses across the temporal lobe, with initial tau accumulation in entorhinal cortex driven by age and subsequent spread driven by neural activity and amyloid-ß. We demonstrate that higher baseline activation predicts increased longitudinal tau accumulation, providing novel evidence that activation-dependent tau production may occur in the human brain. Our findings support major hypotheses generated from preclinical research, and have important translational implications, suggesting that the reduction of hyperactivation may help prevent the development of tau pathology.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Fatores de Risco
10.
Neuroimage ; 265: 119761, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455762

RESUMO

Accurate measurement of Alzheimer's disease (AD) pathology in older adults without significant clinical impairment is critical to assessing intervention strategies aimed at slowing AD-related cognitive decline. The U.S. Study to Protect Brain Health Through Lifestyle Intervention to Reduce Risk (POINTER) is a 2-year randomized controlled trial to evaluate the effect of multicomponent risk reduction strategies in older adults (60-79 years) who are cognitively unimpaired but at increased risk for cognitive decline/dementia due to factors such as cardiovascular disease and family history. The POINTER Imaging ancillary study is collecting tau-PET ([18F]MK6240), beta-amyloid (Aß)-PET ([18F]florbetaben [FBB]) and MRI data to evaluate neuroimaging biomarkers of AD and cerebrovascular pathophysiology in this at-risk sample. Here 481 participants (70.0±5.0; 66% F) with baseline MK6240, FBB and structural MRI scans were included. PET scans were coregistered to the structural MRI which was used to create FreeSurfer-defined reference regions and target regions of interest (ROIs). We also created off-target signal (OTS) ROIs to examine the magnitude and distribution of MK6240 OTS across the brain as well as relationships between OTS and age, sex, and race. OTS was unimodally distributed, highly correlated across OTS ROIs and related to younger age and sex but not race. Aiming to identify an optimal processing approach for MK6240 that would reduce the influence of OTS, we compared our previously validated MRI-guided standard PET processing and 6 alternative approaches. The alternate approaches included combinations of reference region erosion and meningeal OTS masking before spatial smoothing as well as partial volume correction. To compare processing approaches we examined relationships between target ROIs (entorhinal cortex (ERC), hippocampus or a temporal meta-ROI (MetaROI)) SUVR and age, sex, race, Aß and a general cognitive status measure, the Modified Telephone Interview for Cognitive Status (TICSm). Overall, the processing approaches performed similarly, and none showed a meaningful improvement over standard processing. Across processing approaches we observed previously reported relationships with MK6240 target ROIs including positive associations with age, an Aß+> Aß- effect and negative associations with cognition. In sum, we demonstrated that different methods for minimizing effects of OTS, which is highly correlated across the brain within subject, produced no substantive change in our performance metrics. This is likely because OTS contaminates both reference and target regions and this contamination largely cancels out in SUVR data. Caution should be used when efforts to reduce OTS focus on target or reference regions in isolation as this may exacerbate OTS contamination in SUVR data.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Pessoa de Meia-Idade
11.
Brain ; 145(7): 2541-2554, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35552371

RESUMO

Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, ß (females) = 0.08, P (females) = 5.76 × 10-09, ß (males) = -0.01, P(males) = 0.70, ß (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Esclerose Múltipla , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Cognição , Disfunção Cognitiva/genética , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Caracteres Sexuais
12.
Alzheimers Dement ; 19(2): 444-455, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35429219

RESUMO

INTRODUCTION: Relying on magnetic resonance imaging (MRI) for quantification of positron emission tomography (PET) images may limit generalizability of the results. We evaluated several MRI-free approaches for amyloid beta (Aß) and tau PET quantification relative to MRI-dependent quantification cross-sectionally and longitudinally. METHODS: We compared baseline MRI-free and MRI-dependent measurements of Aß PET ([18F]florbetapir [FBP], N = 1290, [18F]florbetaben [FBB], N = 290) and tau PET ([18F]flortaucipir [FTP], N = 768) images with respect to continuous and dichotomous agreement, effect sizes of Aß+ impaired versus Aß- unimpaired groups, and longitudinal standardized uptake value ratio (SUVR) slopes in a subset of individuals. RESULTS: The best-performing MRI-free approaches had high continuous and dichotomous agreement with MRI-dependent SUVRs for Aß PET and temporal flortaucipir (R2 ≥0.95; ± agreement ≥92%) and for Alzheimer's disease-related effect sizes; agreement was slightly lower for entorhinal flortaucipir and longitudinal slopes. DISCUSSION: There is no consistent loss of baseline or longitudinal AD-related signal with MRI-free Aß and tau PET image quantification.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Peptídeos beta-Amiloides , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética , Proteínas tau , Disfunção Cognitiva/patologia
13.
J Neurosci ; 41(2): 366-375, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33219003

RESUMO

Studies suggest that tau deposition starts in the anterolateral entorhinal cortex (EC) with normal aging, and that the presence of ß-amyloid (Aß) facilitates its spread to neocortex, which may reflect the beginning of Alzheimer's disease (AD). Functional connectivity between the anterolateral EC and the anterior-temporal (AT) memory network appears to drive higher tau deposition in AT than in the posterior-medial (PM) memory network. Here, we investigated whether this differential vulnerability to tau deposition may predict different cognitive consequences of EC, AT, and PM tau. Using 18F-flortaucipir (FTP) and 11C-Pittsburgh compound-B (PiB) positron emission tomography (PET) imaging, we measured tau and Aß in 124 cognitively normal human older adults (74 females, 50 males) followed for an average of 2.8 years for prospective cognition. We found that higher FTP in all three regions was individually related to faster memory decline, and that the effects of AT and PM FTP, but not EC, were driven by Aß+ individuals. Moreover, when we included all three FTP measures competitively in the same model, only AT FTP significantly predicted memory decline. Our data support a model whereby tau, facilitated by Aß, transits from EC to cortical regions that are most closely associated with the anterolateral EC, which specifically affects memory in the initial stage of AD. Memory also appears to be affected by EC tau in the absence of Aß, which may be less clinically consequential. These findings may provide clarification of differences between normal aging and AD, and elucidate the transition between the two stages.SIGNIFICANCE STATEMENT Tau and ß-amyloid (Aß) are hallmarks of Alzheimer's disease (AD) but are also found in cognitively normal people. It is unclear whether, and how, this early deposition of tau and Aß may affect cognition in normal aging and the asymptomatic stage of AD. We show that tau deposition in the entorhinal cortex (EC), which is common in advanced age, predicts memory decline in older adults independent of Aß, likely reflecting normal, age-related memory loss. In contrast, tau in anterior-temporal (AT) regions is most predictive of memory decline in Aß+ individuals. These data support the idea that tau preferentially spreads to specific cortical regions, likely through functional connections, which plays a primary role in memory decline in the early stage of AD.


Assuntos
Envelhecimento/genética , Cognição , Disfunção Cognitiva/genética , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/crescimento & desenvolvimento , Função Executiva , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
14.
J Neurosci ; 41(42): 8839-8847, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34531286

RESUMO

The mechanisms underlying accumulation of Alzheimer's disease (AD)-related tau pathology outside of the medial temporal lobe (MTL) in older adults are unknown but crucial to understanding cognitive decline. A growing body of evidence from human and animal studies strongly implicates neural connectivity in the propagation of tau in humans, but the pathways of neocortical tau spread and its consequences for cognitive function are not well understood. Using resting state functional magnetic resonance imaging (fMRI) and tau PET imaging from a sample of 97 male and female cognitively normal older adults, we examined MTL structures involved in medial parietal tau accumulation and associations with memory function. Functional connectivity between hippocampus (HC) and retrosplenial cortex (RsC), a key region of the medial parietal lobe, was associated with tau in medial parietal lobe. By contrast, connectivity between entorhinal cortex (EC) and RsC did not correlate with medial parietal lobe tau. Further, greater hippocampal-retrosplenial (HC-RsC) connectivity was associated with a stronger correlation between MTL and medial parietal lobe tau. Finally, an interaction between connectivity strength and medial parietal tau was associated with episodic memory performance, particularly in the visuospatial domain. This pattern of tau accumulation thus appears to reflect pathways of neural connectivity, and propagation of tau from EC to medial parietal lobe via the HC may represent a critical process in the evolution of cognitive dysfunction in aging and AD.SIGNIFICANCE STATEMENT The accumulation of tau pathology in the neocortex is a fundamental process underlying Alzheimer's disease (AD). Here, we use functional connectivity in cognitively normal older adults to track the accumulation of tau in the medial parietal lobe, a key region for memory processing that is affected early in the progression of AD. We show that the strength of connectivity between the hippocampus (HC) and retrosplenial cortex (RsC) is related to medial parietal tau burden, and that these tau and connectivity measures interact to associate with episodic memory performance. These findings establish the HC as the origin of medial parietal tau and implicate tau pathology in this region as a crucial marker of the beginnings of AD.


Assuntos
Giro do Cíngulo/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Neocórtex/metabolismo , Rede Nervosa/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Estudos Transversais , Feminino , Giro do Cíngulo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neocórtex/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
15.
J Neurosci ; 41(17): 3917-3931, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33731446

RESUMO

Tau deposition begins in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD), and MTL neural dysfunction is commonly observed in these groups. However, the association between tau and MTL neural activity has not been fully characterized. We investigated the effects of tau on repetition suppression, the reduction of activity for repeated stimulus presentations compared to novel stimuli. We used task-based functional MRI (fMRI) to assess MTL subregional activity in 21 young adults (YA) and 45 cognitively normal human older adults (OA; total sample: 37 females, 29 males). AD pathology was measured with position emission tomography (PET), using 18F-Flortaucipir for tau and 11C-Pittsburgh compound B (PiB) for amyloid-ß (Aß). The MTL was segmented into six subregions using high-resolution structural images. We compared the effects of low tau pathology, restricted to entorhinal cortex and hippocampus (Tau- OA), to high tau pathology, also occurring in temporal and limbic regions (Tau+ OA). Low levels of tau (Tau- OA vs YA) were associated with reduced repetition suppression activity specifically in anterolateral entorhinal cortex (alEC) and hippocampus, the first regions to accumulate tau. High tau pathology (Tau+ vs Tau- OA) was associated with widespread reductions in repetition suppression across MTL. Further analyses indicated that reduced repetition suppression was driven by hyperactivity to repeated stimuli, rather than decreased activity to novel stimuli. Increased activation was associated with entorhinal tau, but not Aß. These findings reveal a link between tau deposition and neural dysfunction in MTL, in which tau-related hyperactivity prevents deactivation to repeated stimuli, leading to reduced repetition suppression.SIGNIFICANCE STATEMENT Abnormal neural activity occurs in the medial temporal lobe (MTL) in aging and Alzheimer's disease (AD). Because tau pathology first deposits in the MTL in aging, this altered activity may be due to local tau pathology, and distinct MTL subregions may be differentially vulnerable. We demonstrate that in older adults (OAs) with low tau pathology, there are focal alterations in activity in MTL subregions that first develop tau pathology, while OAs with high tau pathology have aberrant activity throughout MTL. Tau was associated with hyperactivity to repeated stimulus presentations, leading to reduced repetition suppression, the discrimination between novel and repeated stimuli. Our data suggest that tau deposition is related to abnormal activity in MTL before the onset of cognitive decline.


Assuntos
Envelhecimento/fisiologia , Lobo Temporal/fisiologia , Proteínas tau/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Córtex Entorrinal/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Priming de Repetição , Tauopatias/diagnóstico por imagem , Tauopatias/psicologia , Lobo Temporal/metabolismo , Adulto Jovem , Proteínas tau/metabolismo
16.
J Neurosci ; 41(36): 7687-7696, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290080

RESUMO

Alzheimer's disease is associated with poor sleep, but the impact of tau and ß-amyloid (Aß) pathology on sleep remains largely unknown. Here, we test the hypothesis that tau and Aß predict unique impairments in objective and self-perceived human sleep under real-life, free-living conditions. Eighty-nine male and female cognitively healthy older adults received 18F-FTP-tau and 11C-PIB-Aß PET imaging, 7 nights of sleep actigraphy and questionnaire measures, and neurocognitive assessment. Tau burden, but not Aß, was associated with markedly worse objective sleep. In contrast, Aß and tau were associated with worse self-reported sleep quality. Of clinical relevance, Aß burden predicted a unique perceptual mismatch between objective and subject sleep evaluation, with individuals underestimating their sleep. The magnitude of this mismatch was further predicted by worse executive function. Thus, early-stage tau and Aß deposition are linked with distinct phenotypes of real-world sleep impairment, one that includes a cognitive misperception of their own sleep health.SIGNIFICANCE STATEMENT Alzheimer's disease is associated with sleep disruption, often before significant memory decline. Thus, real-life patterns of sleep behavior have the potential to serve as a window into early disease progression. In 89 cognitive healthy older adults, we found that tau burden was associated with worse wristwatch actigraphy-measured sleep quality, and that both tau and ß-amyloid were independently predictive of self-reported sleep quality. Furthermore, individuals with greater ß-amyloid deposition were more likely to underestimate their sleep quality, and sleep quality underestimation was associated with worse executive function. These data support the role of sleep impairment as a key marker of early Alzheimer's disease, and offer the possibility that actigraphy may be an affordable and scalable tool in quantifying Alzheimer's disease-related behavioral changes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Sono/fisiologia , Proteínas tau/metabolismo , Actigrafia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Autorrelato , Inquéritos e Questionários
17.
Neuroimage ; 263: 119658, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191755

RESUMO

Higher neuroticism is a risk factor for Alzheimer's disease (AD), and is implicated in disordered stress responses. The locus coeruleus (LC)-catecholamine system is activated during perceived threat and is a centerpiece of developing models of the pathophysiology of AD, as it is the first brain region to develop abnormal tau. We examined relationships among the "Big 5" personality traits, LC catecholamine synthesis capacity measured with [18F]Fluoro-m-tyrosine PET, and tau burden measured with [18F]Flortaucipir PET in cognitively normal older adults (n = 47). ß-amyloid (Aß) status was determined using [11C]Pittsburgh compound B PET (n = 14 Aß positive). Lower LC catecholamine synthesis capacity was associated with higher neuroticism, more depressive symptoms as measured by the Geriatric Depression Scale, and higher amygdala tau-PET binding. Exploratory analyses with other personality traits revealed that low trait conscientiousness was also related to both lower LC catecholamine synthesis capacity, and more depressive symptoms. A significant indirect path linked both high neuroticism and low conscientiousness to greater amygdala tau burden via their mutual association with low LC catecholamine synthesis capacity. Together, these findings reveal LC catecholamine synthesis capacity to be a promising marker of affective health and pathology burden in aging, and identifies candidate neurobiological mechanisms for the effect of personality on increased vulnerability to dementia.


Assuntos
Doença de Alzheimer , Locus Cerúleo , Humanos , Idoso , Locus Cerúleo/metabolismo , Proteínas tau/metabolismo , Catecolaminas/metabolismo , Neuroticismo , Doença de Alzheimer/patologia , Envelhecimento/patologia , Peptídeos beta-Amiloides/metabolismo , Tomografia por Emissão de Pósitrons
18.
Ann Neurol ; 90(6): 988-993, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590340

RESUMO

Difficulty retrieving proper names is common in older adults, coinciding with the accumulation of aggregated proteins in mid-life. We investigated the ability of healthy older adults to retrieve the names of famous faces in relation to positron emission tomography measurements of amyloid-ß plaques and tau neurofibrillary tangles. More tau in the left fusiform and parahippocampal gyrus was related to reduced proper name retrieval performance and this effect was potentiated by amyloid-ß. These findings provide an explanation for a common complaint of older adults and link proper name retrieval to neural systems involved in face perception, memory, and naming. ANN NEUROL 2021;90:988-993.


Assuntos
Envelhecimento/metabolismo , Rememoração Mental/fisiologia , Lobo Temporal/metabolismo , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/psicologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Fosforilação , Tomografia por Emissão de Pósitrons , Lobo Temporal/diagnóstico por imagem
19.
Cereb Cortex ; 31(10): 4781-4793, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037210

RESUMO

In presymptomatic Alzheimer's disease (AD), beta-amyloid plaques (Aß) and tau tangles accumulate in distinct spatiotemporal patterns within the brain, tracking closely with episodic memory decline. Here, we tested whether age-related changes in the segregation of the brain's intrinsic functional episodic memory networks-anterior-temporal (AT) and posterior-medial (PM) networks-are associated with the accumulation of Aß, tau, and memory decline using fMRI and PET. We found that AT and PM networks were less segregated in older than that in younger adults and this reduced specialization was associated with more tau and Aß in the same regions. The effect of network dedifferentiation on memory depended on the amount of Aß and tau, with low segregation and pathology associated with better performance at baseline and low segregation and high pathology related to worse performance over time. This pattern suggests a compensation phase followed by a degenerative phase in the early, preclinical phase of AD.


Assuntos
Envelhecimento/patologia , Doença de Alzheimer/patologia , Memória/fisiologia , Rede Nervosa/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/psicologia , Disfunção Cognitiva/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Placa Amiloide/patologia , Tomografia por Emissão de Pósitrons , Adulto Jovem , Proteínas tau/metabolismo
20.
Neuroimage ; 243: 118553, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34487825

RESUMO

Tau PET has allowed for critical insights into in vivo patterns of tau accumulation and change in individuals early in the Alzheimer's disease (AD) continuum. A key methodological step in tau PET analyses is the selection of a reference region, but there is not yet consensus on the optimal region especially for longitudinal tau PET analyses. This study examines how reference region selection influences results related to disease stage at baseline and over time. Longitudinal flortaucipir ([18F]-AV1451) PET scans were examined using several common reference regions (e.g., eroded subcortical white matter, inferior cerebellar gray matter) in 62 clinically unimpaired amyloid negative (CU A-) individuals, 73 CU amyloid positive (CU A+) individuals, and 64 amyloid positive individuals with mild cognitive impairment (MCI A+) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Cross-sectionally, both reference regions resulted in robust group differences between CU A-, CU A+, and MCI A+ groups, along with significant associations with CSF phosphorylated tau (pTau-181). However, these results were more focally specific and akin to Braak Staging when using eroded white matter, whereas effects with inferior cerebellum were globally distributed across most cortical regions. Longitudinally, utilization of eroded white matter revealed significant accumulation greater than zero across more regions whereas change over time was diminished using inferior cerebellum. Interestingly, the inferior temporal target region seemed most robust to reference region selection with expected cross-sectional and longitudinal signal across both reference regions. With few exceptions, baseline tau did not significantly predict longitudinal change in tau in the same region regardless of reference region. In summary, reference region selection deserves further evaluation as this methodological step may lead to disparate findings. Inferior cerebellar gray matter may be more sensitive to cross-sectional flortaucipir differences, whereas eroded subcortical white matter may be more sensitive for longitudinal analyses examining regional patterns of change.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Carbolinas , Estudos Transversais , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Neuroimagem , Substância Branca/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA