Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 190(2): 372-387, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843499

RESUMO

Aging is associated with inflammation and metabolic syndrome, which manifests in the liver as nonalcoholic fatty liver disease (NAFLD). NAFLD can range in severity from steatosis to fibrotic steatohepatitis and is a major cause of hepatic morbidity. However, the pathogenesis of NAFLD in naturally aged animals is unclear. Herein, we performed a comprehensive study of lipid content and inflammatory signature of livers in 19-month-old aged female mice. These animals exhibited increased body and liver weight, hepatic triglycerides, and inflammatory gene expression compared with 3-month-old young controls. The aged mice also had a significant increase in F4/80+ hepatic macrophages, which coexpressed CD11b, suggesting a circulating monocyte origin. A global knockout of the receptor for monocyte chemoattractant protein (CCR2) prevented excess steatosis and inflammation in aging livers but did not reduce the number of CD11b+ macrophages, suggesting changes in macrophage accumulation precede or are independent from chemokine (C-C motif) ligand-CCR2 signaling in the development of age-related NAFLD. RNA sequencing further elucidated complex changes in inflammatory and metabolic gene expression in the aging liver. In conclusion, we report a previously unknown accumulation of CD11b+ macrophages in aged livers with robust inflammatory and metabolic transcriptomic changes. A better understanding of the hallmarks of aging in the liver will be crucial in the development of preventive measures and treatments for end-stage liver disease in elderly patients.


Assuntos
Envelhecimento/patologia , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CCR2/metabolismo , Envelhecimento/metabolismo , Animais , Peso Corporal , Quimiocina CCL2/genética , Feminino , Perfilação da Expressão Gênica , Inflamação/etiologia , Inflamação/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tamanho do Órgão , Receptores CCR2/genética
2.
Semin Immunol ; 29: 24-32, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28539184

RESUMO

The host macrophage response is now well recognized as a predictor of the success or failure of biomaterial implants following placement. More specifically, shifts from an "M1" pro-inflammatory towards a more "M2-like" anti-inflammatory macrophage polarization profile have been shown to result in enhanced material integration and/or tissue regeneration downstream. As a result, a number of biomaterials-based approaches to controlling macrophage polarization have been developed. However, the ability to promote such activity is predicated upon an in-depth, context-dependent understanding of the host response to biomaterials. Recent work has shown the impacts of both tissue location and tissue status (i.e. underlying pathology) upon the host innate immune response to implants, representing a departure from a focus upon implant material composition and form. Thus, the ideas of "biocompatibility," the host macrophage reaction, and ideal material requirements and modification strategies may need to be revisited on a patient, tissue, and disease basis. Immunosenescence, dysregulation of macrophage function, and delayed resolution of immune responses in aged individuals have all been demonstrated, suggesting that the host response to biomaterials in aged individuals should differ from that in younger individuals. However, despite the increasing usage of implantable medical devices in aged patients, few studies examining the effects of aging upon the host response to biomaterials and the implications of this response for long-term integration and function have been performed. The objective of the present manuscript is to review the putative effects of aging upon the host response to implanted materials and to advance the hypothesis that age-related changes in the local microenvrionement, with emphasis on the extracellular matrix, play a previously unrecognized role in determining the host response to implants.


Assuntos
Envelhecimento/imunologia , Materiais Biocompatíveis/uso terapêutico , Matriz Extracelular/imunologia , Macrófagos/imunologia , Próteses e Implantes , Animais , Anti-Inflamatórios/uso terapêutico , Microambiente Celular , Humanos , Imunidade Inata , Implantação de Prótese , Cicatrização
3.
Front Immunol ; 9: 2795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555477

RESUMO

The number of individuals aged 65 or older is projected to increase globally from 524 million in 2010 to nearly 1. 5 billion in 2050. Aged individuals are particularly at risk for developing chronic illness, while being less able to regenerate healthy tissue and tolerate whole organ transplantation procedures. In the liver, these age-related diseases include non-alcoholic fatty liver disease, alcoholic liver disease, hepatitis, fibrosis, and cirrhosis. Hepatic macrophages, a population comprised of both Kupffer cells and infiltrating monocyte derived macrophages, are implicated in several chronic liver diseases and also play important roles in the homeostatic functions of the liver. The effects of aging on hepatic macrophage population dynamics, polarization, and function are not well understood. Studies performed on macrophages derived from other aged sources, such as the bone marrow, peritoneal cavity, lungs, and brain, demonstrate general reductions in autophagy and phagocytosis, dysfunction in cytokine signaling, and altered morphology and distribution, likely mediated by epigenetic changes and mitochondrial defects, that may be applicable to hepatic macrophages. This review highlights recent findings in macrophage developmental biology and function, particularly in the liver, and discusses the role of macrophages in various age-related liver diseases. A better understanding of the biology of aging that influences hepatic macrophages and thus the progression of chronic liver disease will be crucial in order to develop new interventions and treatments for liver disease in aging populations.


Assuntos
Envelhecimento/imunologia , Células de Kupffer/imunologia , Hepatopatias/imunologia , Envelhecimento/patologia , Animais , Autofagia/imunologia , Citocinas/imunologia , Humanos , Células de Kupffer/patologia , Hepatopatias/patologia , Hepatopatias/terapia , Fagocitose , Transdução de Sinais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA