Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Mol Psychiatry ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849515

RESUMO

This study aims to determine whether 1) individuals with treatment-resistant schizophrenia display early cognitive impairment compared to treatment-responders and healthy controls and 2) N-methyl-D-aspartate-receptor hypofunction is an underlying mechanism of cognitive deficits in treatment-resistance. In this case‒control 3-year-follow-up longitudinal study, n = 697 patients with first-episode psychosis, aged 18 to 35, were screened for Treatment Response and Resistance in Psychosis criteria through an algorithm that assigns patients to responder, limited-response or treatment-resistant category (respectively resistant to 0, 1 or 2 antipsychotics). Assessments at baseline: MATRICS Consensus Cognitive Battery; N-methyl-D-aspartate-receptor co-agonists biomarkers in brain by MRS (prefrontal glutamate levels) and plasma (D-serine and glutamate pathways key markers). Patients were compared to age- and sex-matched healthy controls (n = 114). Results: patient mean age 23, 27% female. Treatment-resistant (n = 51) showed lower scores than responders (n = 183) in processing speed, attention/vigilance, working memory, verbal learning and visual learning. Limited responders (n = 59) displayed an intermediary phenotype. Treatment-resistant and limited responders were merged in one group for the subsequent D-serine and glutamate pathway analyses. This group showed D-serine pathway dysregulation, with lower levels of the enzymes serine racemase and serine-hydroxymethyltransferase 1, and higher levels of the glutamate-cysteine transporter 3 than in responders. Better cognition was associated with higher D-serine and lower glutamate-cysteine transporter 3 levels only in responders; this association was disrupted in the treatment resistant group. Treatment resistant patients and limited responders displayed early cognitive and persistent functioning impairment. The dysregulation of NMDAR co-agonist pathways provides underlying molecular mechanisms for cognitive deficits in treatment-resistant first-episode psychosis. If replicated, our findings would open ways to mechanistic biomarkers guiding response-based patient stratification and targeting cognitive improvement in clinical trials.

2.
Mol Psychiatry ; 29(5): 1406-1416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38388704

RESUMO

Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.


Assuntos
Disfunção Cognitiva , Córtex Insular , Ketamina , Isolamento Social , Animais , Ketamina/farmacologia , Camundongos , Masculino , Córtex Insular/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Camundongos Endogâmicos C57BL , Memória/efeitos dos fármacos , Cognição/efeitos dos fármacos , Comportamento Social , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico
3.
Neurobiol Dis ; 192: 106433, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331354

RESUMO

Depression frequently occurs in patients with liver cirrhosis, yet the reasons for this correlation are not fully understood. Dysbiosis of gut microbiota has been implicated in depression through the gut-brain axis via the vagus nerve. This study explored the potential role of the gut-liver-brain axis via the vagus nerve in depression-like phenotypes in mice with liver cirrhosis. These mice underwent common bile duct ligation (CBDL), a method used to stimulate liver cirrhosis. To assess depression-like behaviors, behavioral tests were conducted 10 days following either sham or CBDL surgeries. The mice with CBDL displayed symptoms such as splenomegaly, elevated plasma levels of interleukin-6 and tumor necrosis factor-α, depression-like behaviors, decreased levels of synaptic proteins in the prefrontal cortex (PFC), disrupted gut microbiota balance, and changes in blood metabolites (or lipids). Additionally, there were positive or negative correlations between the relative abundance of microbiome and behavioral data or blood metabolites (or lipids). Significantly, these changes were reversed in CBDL mice by performing a subdiaphragmatic vagotomy. Intriguingly, depression-like phenotypes in mice with CBDL were improved after a single injection of arketamine, a new antidepressant. These results suggest that CBDL-induced depression-like phenotypes in mice are mediated through the gut-liver-brain axis via the subdiaphragmatic vagus nerve, and that arketamine might offer a new treatment approach for depression in liver cirrhosis patients.


Assuntos
Eixo Encéfalo-Intestino , Depressão , Camundongos , Humanos , Animais , Depressão/etiologia , Ducto Colédoco/patologia , Ducto Colédoco/fisiologia , Cirrose Hepática/patologia , Nervo Vago , Ligadura , Encéfalo/patologia , Lipídeos
4.
Neurobiol Dis ; 199: 106573, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901783

RESUMO

Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-ß1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-ß1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-ß1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.

5.
Neurobiol Dis ; 190: 106375, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38092269

RESUMO

Patients with chronic pain often experience memory impairment, but the underlying mechanisms remain elusive. The myelin sheath is crucial for rapid and accurate action potential conduction, playing a pivotal role in the development of cognitive abilities in the central nervous system. The study reveals that myelin degradation occurs in the hippocampus of chronic constriction injury (CCI) mice, which display both chronic pain and memory impairment. Using fiber photometry, we observed diminished task-related neuronal activity in the hippocampus of CCI mice. Interestingly, the repeated administration with clemastine, which promotes myelination, counteracts the CCI-induced myelin loss and reduced neuronal activity. Notably, clemastine specifically ameliorates the impaired memory without affecting chronic pain in CCI mice. Overall, our findings highlight the significant role of myelin abnormalities in CCI-induced memory impairment, suggesting a potential therapeutic approach for treating memory impairments associated with neuropathic pain.


Assuntos
Dor Crônica , Clemastina , Humanos , Animais , Camundongos , Clemastina/metabolismo , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Bainha de Mielina/metabolismo , Sistema Nervoso Central , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo
6.
Plant Cell Physiol ; 65(4): 660-670, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38195149

RESUMO

In response to both biotic and abiotic stresses, vascular plants transmit long-distance Ca2+ and electrical signals from localized stress sites to distant tissues through their vasculature. Various models have been proposed for the mechanisms underlying the long-distance signaling, primarily centered around the presence of vascular bundles. We here demonstrate that the non-vascular liverwort Marchantia polymorpha possesses a mechanism for propagating Ca2+ waves and electrical signals in response to wounding. The propagation velocity of these signals was approximately 1-2 mm s-1, equivalent to that observed in vascular plants. Both Ca2+ waves and electrical signals were inhibited by La3+ as well as tetraethylammonium chloride, suggesting the crucial importance of both Ca2+ channel(s) and K+ channel(s) in wound-induced membrane depolarization as well as the subsequent long-distance signal propagation. Simultaneous recordings of Ca2+ and electrical signals indicated a tight coupling between the dynamics of these two signaling modalities. Furthermore, molecular genetic studies revealed that a GLUTAMATE RECEPTOR-LIKE (GLR) channel plays a central role in the propagation of both Ca2+ waves and electrical signals. Conversely, none of the three two-pore channels were implicated in either signal propagation. These findings shed light on the evolutionary conservation of rapid long-distance Ca2+ wave and electrical signal propagation involving GLRs in land plants, even in the absence of vascular tissue.


Assuntos
Sinalização do Cálcio , Cálcio , Marchantia , Marchantia/fisiologia , Marchantia/genética , Marchantia/metabolismo , Cálcio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Lantânio/farmacologia , Receptores de Glutamato/metabolismo , Receptores de Glutamato/genética , Canais de Cálcio/metabolismo , Canais de Cálcio/genética , Tetraetilamônio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/genética
7.
Genes Cells ; 28(2): 149-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527312

RESUMO

We recently identified walbRep, a satellite DNA residing in the genome of the red-necked wallaby Notamacropus rufogriseus. It originates from the walb endogenous retrovirus and is organized in a manner in which the provirus structure is retained. The walbRep repeat units feature an average pairwise nucleotide identity as high as 99.5%, raising the possibility of a recent origin. The tammar wallaby N. eugenii is a species estimated to have diverged from the red-necked wallaby 2-3 million years ago. In PCR analyses of these two and other related species, walbRep-specific fragment amplification was observed only in the red-necked wallaby. Sequence database searches for the tammar wallaby resulted in sequence alignment lists that were sufficiently powerful to exclude the possibility of walbRep existence. These results suggested that the walbRep formation occurred in the red-necked wallaby lineage after its divergence from the tammar wallaby lineage, thus in a time span of maximum 3 million years.


Assuntos
Retrovirus Endógenos , Macropodidae , Animais , Macropodidae/genética , DNA Satélite/genética , Retrovirus Endógenos/genética , Replicação do DNA
8.
Brain Behav Immun ; 115: 64-79, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793489

RESUMO

CD38 is involved in immune responses, cell proliferation, and has been identified in the brain, where it is implicated in inflammation processes and psychiatric disorders. We hypothesized that dysfunctional CD38 activity in the brain may contribute to the pathogenesis of depression. To investigate the underlying mechanisms, we used a lipopolysaccharide (LPS)-induced depression-like model and conducted behavioral tests, molecular and morphological methods, along with optogenetic techniques. We microinjected adeno-associated virus into the hippocampal CA3 region with stereotaxic instrumentation. Our results showed a marked increase in CD38 expression in both the hippocampus and cortex of LPS-treated mice. Additionally, pharmacological inhibition and genetic knockout of CD38 effectively alleviated neuroinflammation, microglia activation, synaptic defects, and Sirt1/STAT3 signaling, subsequently improving depression-like behaviors. Moreover, optogenetic activation of glutamatergic neurons of hippocampal CA3 reduced the susceptibility of mice to depression-like behaviors, accompanied by reduced CD38 expression. We also found that (R)-ketamine, which displayed antidepressant effects, was linked to its anti-inflammatory properties by suppressing increased CD38 expression and reversing synaptic defects. In conclusion, hippocampal CD38 is closely linked to depression-like behaviors in an inflammation model, highlighting its potential as a therapeutic target for antidepressant development.


Assuntos
ADP-Ribosil Ciclase 1 , Depressão , Ketamina , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Depressão/metabolismo , Hipocampo/metabolismo , Inflamação/metabolismo , Ketamina/farmacologia , Ketamina/uso terapêutico , Ketamina/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , ADP-Ribosil Ciclase 1/metabolismo
9.
Mol Psychiatry ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37402856

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a serious public health burden worldwide. In addition to respiratory, heart, and gastrointestinal symptoms, patients infected with SARS-CoV-2 experience a number of persistent neurological and psychiatric symptoms, known as long COVID or "brain fog". Studies of autopsy samples from patients who died from COVID-19 detected SARS-CoV-2 in the brain. Furthermore, increasing evidence shows that Epstein-Barr virus (EBV) reactivation after SARS-CoV-2 infection might play a role in long COVID symptoms. Moreover, alterations in the microbiome after SARS-CoV-2 infection might contribute to acute and long COVID symptoms. In this article, the author reviews the detrimental effects of COVID-19 on the brain, and the biological mechanisms (e.g., EBV reactivation, and changes in the gut, nasal, oral, or lung microbiomes) underlying long COVID. In addition, the author discusses potential therapeutic approaches based on the gut-brain axis, including plant-based diet, probiotics and prebiotics, fecal microbiota transplantation, and vagus nerve stimulation, and sigma-1 receptor agonist fluvoxamine.

10.
Mol Psychiatry ; 28(9): 3625-3637, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845499

RESUMO

The human body harbors a diverse ecosystem of microorganisms, including bacteria, viruses, and fungi, collectively known as the microbiota. Current research is increasingly focusing on the potential association between the microbiota and various neuropsychiatric disorders. The microbiota resides in various parts of the body, such as the oral cavity, nasal passages, lungs, gut, skin, bladder, and vagina. The gut microbiota in the gastrointestinal tract has received particular attention due to its high abundance and its potential role in psychiatric and neurodegenerative disorders. However, the microbiota presents in other body tissues, though less abundant, also plays crucial role in immune system and human homeostasis, thus influencing the development and progression of neuropsychiatric disorders. For example, oral microbiota imbalance and associated periodontitis might increase the risk for neuropsychiatric disorders. Additionally, studies using the postmortem brain samples have detected the widespread presence of oral bacteria in the brains of patients with Alzheimer's disease. This article provides an overview of the emerging role of the host microbiota in neuropsychiatric disorders and discusses future directions, such as underlying biological mechanisms, reliable biomarkers associated with the host microbiota, and microbiota-targeted interventions, for research in this field.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Humanos , Encéfalo
11.
Mol Psychiatry ; 28(6): 2266-2276, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36670198

RESUMO

Ketamine, a commonly used general anesthetic, can produce rapid and sustained antidepressant effect. However, the efficacy and safety of the perioperative application of ketamine on postoperative depression remains uncertain. We performed a meta-analysis to determine the effect of perioperative intravenous administration of ketamine on postoperative depression. Randomized controlled trials comparing ketamine with placebo in patients were included. Primary outcome was postoperative depression scores. Secondary outcomes included postoperative visual analog scale (VAS) scores for pain and adverse effects associated with ketamine. Fifteen studies with 1697 patients receiving ketamine and 1462 controls were enrolled. Compared with the controls, the ketamine group showed a reduction in postoperative depression scores, by a standardized mean difference (SMD) of -0.97, 95% confidence interval [CI, -1.27, -0.66], P < 0.001, I2 = 72% on postoperative day (POD) 1; SMD-0.65, 95% CI [-1.12, -0.17], P < 0.001, I2 = 94% on POD 3; SMD-0.30, 95% CI [-0.45, -0.14], P < 0.001, I2 = 0% on POD 7; and SMD-0.25, 95% CI [-0.38, -0.11], P < 0.001, I2 = 59% over the long term. Ketamine reduced VAS pain scores on POD 1 (SMD-0.93, 95% CI [-1.58, -0.29], P = 0.005, I2 = 97%), but no significant difference was found between the two groups on PODs 3 and 7 or over the long term. However, ketamine administration distinctly increased the risk of adverse effects, including nausea and vomiting (risk ratio [RR] 1.40, 95% CI [1.12, 1.75], P = 0.003, I2 = 30%), headache (RR 2.47, 95% CI [1.41, 4.32], P = 0.002, I2 = 19%), hallucination (RR 15.35, 95% CI [6.24, 37.34], P < 0.001, I2 = 89%), and dizziness (RR 3.48, 95% CI [2.68, 4.50], P < 0.001, I2 = 89%) compared with the controls. In conclusion, perioperative application of ketamine reduces postoperative depression and pain scores with increased risk of adverse effects.


Assuntos
Transtorno Depressivo , Ketamina , Humanos , Ketamina/uso terapêutico , Depressão/tratamento farmacológico , Antidepressivos/uso terapêutico , Transtorno Depressivo/tratamento farmacológico , Dor/tratamento farmacológico , Dor Pós-Operatória/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Mol Psychiatry ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848708

RESUMO

Ketamine exhibits rapid and sustained antidepressant effects. As decreased myelination has been linked to depression pathology, changes in myelination may be a pivotal mechanism underlying ketamine's long-lasting antidepressant effects. Although ketamine has a long-lasting facilitating effect on myelination, the precise roles of myelination in ketamine's sustained antidepressant effects remain unknown. In this study, we employed spatial transcriptomics (ST) to examine ketamine's lasting effects in the medial prefrontal cortex (mPFC) and hippocampus of mice subjected to chronic social defeat stress and identified several differentially expressed myelin-related genes. Ketamine's ability to restore impaired myelination in the brain by promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes was demonstrated. Moreover, we showed that inhibiting the expression of myelin-associated oligodendrocytic basic protein (Mobp) blocked ketamine's long-lasting antidepressant effects. We also illustrated that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) signaling mediated ketamine's facilitation on myelination. In addition, we found that the (R)-stereoisomer of ketamine showed stronger effects on myelination than (S)-ketamine, which may explain its longer-lasting antidepressant effects. These findings reveal novel mechanisms underlying the sustained antidepressant effects of ketamine and the differences in antidepressant effects between (R)-ketamine and (S)-ketamine, providing new insights into the role of myelination in antidepressant mechanisms.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38411629

RESUMO

The growing interest in the rapid and sustained antidepressant effects of the dissociative anesthetic ketamine and classic psychedelics, such as psilocybin, is remarkable. However, both ketamine and psychedelics are known to induce acute mystical experiences; ketamine can cause dissociative symptoms such as out-of-body experience, while psychedelics typically bring about hallucinogenic experiences, like a profound sense of unity with the universe or nature. The role of these mystical experiences in enhancing the antidepressant outcomes for patients with depression is currently an area of ongoing investigation and debate. Clinical studies have shown that the dissociative symptoms following the administration of ketamine or (S)-ketamine (esketamine) are not directly linked to their antidepressant properties. In contrast, the antidepressant potential of (R)-ketamine (arketamine), thought to lack dissociative side effects, has yet to be conclusively proven in large-scale clinical trials. Moreover, although the activation of the serotonin 5-HT2A receptor is crucial for the hallucinogenic effects of psychedelics in humans, its precise role in their antidepressant action is still under discussion. This article explores the importance of mystical experiences in enhancing the antidepressant efficacy of both ketamine and classic psychedelics.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38662093

RESUMO

Ketamine has demonstrated rapid and sustained antidepressant effects, marking its emergence as an innovative treatment of depression. Despite the growing number of preclinical and clinical studies exploring the antidepressant effects of ketamine and its enantiomers, a comprehensive bibliometric analysis in this field has yet to be conducted. This study employs bibliometric methods and visualization tools to examine the literature and identify key topics related to the antidepressant effects of ketamine and its enantiomers. We sourced publications on the antidepressant effects of ketamine and its enantiomers from the Web of Science Core Collection (WOSCC) database, covering the period from 2000 to 2023. Tools such as VOSviewer, CiteSpace and the R package "bibliometrix" were utilized for visual analysis. The study included 4,274 publications, with a notable increase in publications peaking in 2022. Co-occurrence analysis highlighted two primary research focal points: the efficacy and safety of ketamine and its enantiomers in treating depression, and the mechanisms behind their antidepressant effects. In conclusion, this analysis revealed a significant increase in research on the antidepressant effects of ketamine and its enantiomers over the past two decades, leading to the approval of esketamine nasal spray for treatment-resistant depression. The rapid antidepressant effects of ketamine have spurred further studies into its mechanisms of action and the search for new antidepressants with fewer side effects.

15.
Neurobiol Dis ; 189: 106348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956855

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA) is the most widely used illicit substance worldwide. Nevertheless, recent observational studies demonstrated that lifetime MDMA use among U.S. adults was associated with a lower risk of depression and suicide thoughts. We recently reported that the gut-brain axis may contribute to MDMA-induced stress resilience in mice. To further explore this, we investigated the effects of subdiaphragmatic vagotomy (SDV) in modulating the stress resilience effects of MDMA in mice subjected to chronic restrain stress (CRS). Pretreatment with MDMA (10 mg/kg/day for 14 days) blocked anhedonia-like behavior and reduced expression of synaptic proteins and brain-derived neurotrophic factor in the prefrontal cortex (PFC) of CRS-exposed mice. Interestingly, SDV blocked the beneficial effects of MDMA on these alterations in CRS-exposed mice. Analysis of gut microbiome revealed alterations in four measures of α-diversity between the sham + MDMA + CRS group and the SDV + MDMA + CRS group. Moreover, specific microbes differed between the vehicle + CRS group and the MDMA + CRS group, and further differences in microbial composition were observed among all four groups. Untargeted metabolomics analysis showed that SDV prevented the increase in plasma levels of three compounds [lactic acid, 1-(2-hydroxyethyl)-2,2,6-tetramethyl-4-piperidinol, 8-acetyl-7-hydroxyvumaline] observed in the sham + MDMA + CRS group. Interestingly, positive correlations were found between the plasma levels of two of these compounds and the abundance of several microbes across all groups. In conclusion, our data suggest that the gut-brain axis via the subdiaphragmatic vagus nerve might contribute to the stress resilience of MDMA.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina , Resiliência Psicológica , Humanos , Camundongos , Animais , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Eixo Encéfalo-Intestino , Córtex Pré-Frontal , Nervo Vago
16.
Neurobiol Dis ; 176: 105951, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493975

RESUMO

Multiple sclerosis (MS) is the most common demyelinating disease that attacks the central nervous system. Dietary intake of cuprizone (CPZ) produces demyelination resembling that of patients with MS. Given the role of the vagus nerve in gut-microbiota-brain axis in development of MS, we performed this study to investigate whether subdiaphragmatic vagotomy (SDV) affects demyelination in CPZ-treated mice. SDV significantly ameliorated demyelination and microglial activation in the brain compared with sham-operated CPZ-treated mice. Furthermore, 16S ribosomal RNA analysis revealed that SDV significantly improved the abnormal gut microbiota composition of CPZ-treated mice. An untargeted metabolomic analysis demonstrated that SDV significantly improved abnormal blood levels of metabolites in CPZ-treated mice compared with sham-operated CPZ-treated mice. Notably, there were correlations between demyelination or microglial activation in the brain and the relative abundance of several microbiome populations, suggesting a link between gut microbiota and the brain. There were also correlations between demyelination or microglial activation in the brain and blood levels of metabolites. Together, these data suggest that CPZ produces demyelination in the brain through the gut-microbiota-brain axis via the subdiaphragmatic vagus nerve.


Assuntos
Doenças Desmielinizantes , Microbiota , Esclerose Múltipla , Animais , Camundongos , Encéfalo/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Nervo Vago/metabolismo
17.
Clin Immunol ; 257: 109850, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38013165

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by enigmatic pathogenesis. Polyunsaturated fatty acids (PUFAs) are implicated in RA's development and progression, yet their exact mechanisms of influence are not fully understood. Soluble epoxide hydrolase (sEH) is an enzyme that metabolizes anti-inflammatory epoxy fatty acids (EpFAs), derivatives of PUFAs. In this study, we report elevated sEH expression in the joints of CIA (collagen-induced arthritis) rats, concomitant with diminished levels of two significant EpFAs. Additionally, increased sEH expression was detected in both the synovium of CIA rats and in the synovium and fibroblast-like synoviocytes (FLS) of RA patients. The sEH inhibitor TPPU attenuated the migration and invasion capabilities of FLS derived from RA patients and to reduce the secretion of inflammatory factors by these cells. Our findings indicate a pivotal role for sEH in RA pathogenesis and suggest that sEH inhibitors offer a promising new therapeutic strategy for managing RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Animais , Humanos , Ratos , Artrite Reumatoide/enzimologia , Artrite Reumatoide/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Epóxido Hidrolases/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
18.
J Transl Med ; 21(1): 71, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732752

RESUMO

BACKGROUND: Patients suffering from chronic pain often also exhibit depression symptoms. Soluble epoxide hydrolase (sEH) inhibitors can decrease blood levels of inflammatory cytokines. However, whether inhibiting sEH signaling is beneficial for the comorbidity of pain and depression is unknown. METHODS: According to a sucrose preference test (SPT), spared nerve injury (SNI) mice were classified into pain with or without an anhedonia phenotype. Then, sEH protein expression and inflammatory cytokines were assessed in selected tissues. Furthermore, we used sEH inhibitor TPPU to determine the role of sEH in chronic pain and depression. Importantly, agonists and antagonists of aryl hydrocarbon receptor (AHR) and translocator protein (TSPO) were used to explore the pathogenesis of sEH signaling. RESULTS: In anhedonia-susceptible mice, the tissue levels of sEH were significantly increased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, liver, kidney, and gut. Importantly, serum CYP1A1 and inflammatory cytokines, such as interleukin 1ß (IL-1ß) and the tumor necrosis factor α (TNF-α), were increased simultaneously. TPPU improved the scores of mechanical withdrawal threshold (MWT) and SPT, and decreased the levels of serum CYP1A1 and inflammatory cytokines. AHR antagonist relieved the anhedonia behaviors but not the algesia behaviors in anhedonia-susceptible mice, whereas an AHR agonist abolished the antidepressant-like effect of TPPU. In addition, a TSPO agonist exerted a similar therapeutic effect to that of TPPU, whereas pretreatment with a TSPO antagonist abolished the antidepressant-like and analgesic effects of TPPU. CONCLUSIONS: sEH underlies the mechanisms of the comorbidity of chronic pain and depression and that TPPU exerts a beneficial effect on anhedonia behaviors in a pain model via AHR and TSPO signaling.


Assuntos
Dor Crônica , Depressão , Animais , Camundongos , Anedonia , Antidepressivos , Dor Crônica/complicações , Dor Crônica/tratamento farmacológico , Comorbidade , Citocromo P-450 CYP1A1 , Citocinas/metabolismo , Depressão/complicações , Depressão/tratamento farmacológico , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Receptores de Hidrocarboneto Arílico , Receptores Citoplasmáticos e Nucleares
19.
BMC Microbiol ; 23(1): 175, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407947

RESUMO

BACKGROUND: Microorganisms that activate plant immune responses are useful for application as biocontrol agents in agriculture to minimize crop losses. The present study was conducted to identify and characterize plant immunity-activating microorganisms in Brassicaceae plants. RESULTS: A total of 25 bacterial strains were isolated from the interior of a Brassicaceae plant, Raphanus sativus var. hortensis. Ten different genera of bacteria were identified: Pseudomonas, Leclercia, Enterobacter, Xanthomonas, Rhizobium, Agrobacterium, Pantoea, Rhodococcus, Microbacterium, and Plantibacter. The isolated strains were analyzed using a method to detect plant immunity-activating microorganisms that involves incubation of the microorganism with tobacco BY-2 cells, followed by treatment with cryptogein, a proteinaceous elicitor of tobacco immune responses. In this method, cryptogein-induced production of reactive oxygen species (ROS) in BY-2 cells serves as a marker of immune activation. Among the 25 strains examined, 6 strains markedly enhanced cryptogein-induced ROS production in BY-2 cells. These 6 strains colonized the interior of Arabidopsis plants, and Pseudomonas sp. RS3R-1 and Rhodococcus sp. RS1R-6 selectively enhanced plant resistance to the bacterial pathogens Pseudomonas syringae pv. tomato DC3000 and Pectobacterium carotovorum subsp. carotovorum NBRC 14082, respectively. In addition, Pseudomonas sp. RS1P-1 effectively enhanced resistance to both pathogens. We also comprehensively investigated the localization (i.e., cellular or extracellular) of the plant immunity-activating components produced by the bacteria derived from R. sativus var. hortensis and the components produced by previously isolated bacteria derived from another Brassicaceae plant species, Brassica rapa var. perviridis. Most gram-negative strains enhanced cryptogein-induced ROS production in BY-2 cells via the presence of cells themselves rather than via extracellular components, whereas many gram-positive strains enhanced ROS production via extracellular components. Comparative genomic analyses supported the hypothesis that the structure of lipopolysaccharides in the outer cell envelope plays an important role in the ROS-enhancing activity of gram-negative Pseudomonas strains. CONCLUSIONS: The assay method described here based on elicitor-induced ROS production in cultured plant cells enabled the discovery of novel plant immunity-activating bacteria from R. sativus var. hortensis. The results in this study also suggest that components involved in the ROS-enhancing activity of the bacteria may differ depending largely on genus and species.


Assuntos
Arabidopsis , Brassicaceae , Espécies Reativas de Oxigênio , Pseudomonas syringae/genética , Imunidade Vegetal , Doenças das Plantas/microbiologia
20.
New Phytol ; 238(1): 270-282, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36597715

RESUMO

Guard cells control the opening of stomatal pores in the leaf surface, with the use of a network of protein kinases and phosphatases. Loss of function of the CBL-interacting protein kinase 23 (CIPK23) was previously shown to decrease the stomatal conductance, but the molecular mechanisms underlying this response still need to be clarified. CIPK23 was specifically expressed in Arabidopsis guard cells, using an estrogen-inducible system. Stomatal movements were linked to changes in ion channel activity, determined with double-barreled intracellular electrodes in guard cells and with the two-electrode voltage clamp technique in Xenopus oocytes. Expression of the phosphomimetic variant CIPK23T190D enhanced stomatal opening, while the natural CIPK23 and a kinase-inactive CIPK23K60N variant did not affect stomatal movements. Overexpression of CIPK23T190D repressed the activity of S-type anion channels, while their steady-state activity was unchanged by CIPK23 and CIPK23K60N . We suggest that CIPK23 enhances the stomatal conductance at favorable growth conditions, via the regulation of several ion transport proteins in guard cells. The inhibition of SLAC1-type anion channels is an important facet of this response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/fisiologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA