RESUMO
BACKGROUND: The objective of this research was to elucidate the hypocholesterolemic effects of a bioactive compound extracted from buckwheat, and to delineate its influence on the regulatory mechanisms of cholesterol metabolism. The compound under investigation was identified as quercetin. MATERIAL AND RESULTS: In vitro experiments conducted on HepG2 cells treated with quercetin revealed a significant reduction in intracellular cholesterol accumulation. This phenomenon was rigorously quantified by assessing the transcriptional activity of key genes involved in the biosynthesis and metabolism of cholesterol. A statistically significant reduction in the expression of HMG-CoA reductase (HMGCR) was observed, indicating a decrease in endogenous cholesterol synthesis. Conversely, an upregulation in the expression of cholesterol 7 alpha-hydroxylase (CYP7A1) was also observed, suggesting an enhanced catabolism of cholesterol to bile acids. Furthermore, the study explored the combinatory effects of quercetin and simvastatin, a clinically utilized statin, revealing a synergistic action in modulating cholesterol levels at various dosages. CONCLUSIONS: The findings from this research provide a comprehensive insight into the mechanistic pathways through which quercetin, a phytochemical derived from buckwheat, exerts its hypocholesterolemic effects. Additionally, the observed synergistic interaction between quercetin and simvastatin opens up new avenues for the development of combined therapeutic strategies to manage hyperlipidemia.
Assuntos
Colesterol 7-alfa-Hidroxilase , Colesterol , Fagopyrum , Hidroximetilglutaril-CoA Redutases , Metabolismo dos Lipídeos , Compostos Fitoquímicos , Quercetina , Humanos , Fagopyrum/química , Fagopyrum/metabolismo , Células Hep G2 , Colesterol/metabolismo , Quercetina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Compostos Fitoquímicos/farmacologia , Hidroximetilglutaril-CoA Redutases/metabolismo , Hidroximetilglutaril-CoA Redutases/genética , Colesterol 7-alfa-Hidroxilase/metabolismo , Colesterol 7-alfa-Hidroxilase/genética , Anticolesterolemiantes/farmacologia , Sinvastatina/farmacologia , Extratos Vegetais/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacosRESUMO
Cryoconite holes, small meltwater pools on the surface of glaciers and ice sheets, represent extremely cold ecosystems teeming with diverse microbial life. Cryoconite holes exhibit greater susceptibility to the impacts of climate change, underlining the imperative nature of investigating microbial communities as an essential module of polar and alpine ecosystem monitoring efforts. Microbes in cryoconite holes play a critical role in nutrient cycling and can produce bioactive compounds, holding promise for industrial and pharmaceutical innovation. Understanding microbial diversity in these delicate ecosystems is essential for effective conservation strategies. Therefore, this review discusses the microbial diversity in these extreme environments, aiming to unveil the complexity of their microbial communities. The current study envisages that cryoconite holes as distinctive ecosystems encompass a multitude of taxonomically diverse and functionally adaptable microorganisms that exhibit a rich microbial diversity and possess intricate ecological functions. By investigating microbial diversity and ecological functions of cryoconite holes, this study aims to contribute valuable insights into the broader field of environmental microbiology and enhance further understanding of these ecosystems. This review seeks to provide a holistic overview regarding the formation, evolution, characterization, and molecular adaptations of cryoconite holes. Furthermore, future research directions and challenges underlining the need for long-term monitoring, and ethical considerations in preserving these pristine environments are also provided. Addressing these challenges and resolutely pursuing future research directions promises to enrich our comprehension of microbial diversity within cryoconite holes, revealing the broader ecological and biogeochemical implications. The inferences derived from the present study will provide researchers, ecologists, and policymakers with a profound understanding of the significance and utility of cryoconite holes in unveiling the microbial diversity and its potential applications.
Assuntos
Camada de Gelo , Microbiota , Camada de Gelo/microbiologia , Biodiversidade , Ecossistema , Bactérias/genética , Bactérias/enzimologia , Mudança ClimáticaRESUMO
MAIN CONCLUSION: Environmental DNA-based monitoring provides critical insights for enhancing our understanding of plant-animal interactions in the context of worldwide biodiversity decrease for developing a global framework for effective plant biodiversity conservation. To understand the ecology and evolutionary patterns of plant-animal interactions (PAI) and their pivotal roles in ecosystem functioning advances in molecular ecology tools such as Environmental DNA (eDNA) provide unprecedented research avenues. These methods being non-destructive in comparison to traditional biodiversity monitoring methods, enhance the discernment of ecosystem health, integrity, and complex interactions. This review intends to offer a systematic and critical appraisal of the prospective of eDNA for investigating PAI. The review thoroughly discusses and analyzes the recent reports (2015-2022) employing preferred reporting items for systematic reviews and meta-analyses (PRISMA) to outline the recent progression in eDNA approaches for elucidating PAI. The current review envisages that eDNA has a significant potential to monitor both plants and associated cohort of prospective pollinators (avian species and flowering plants, bees and plants, arthropods and plants, bats and plants, etc.). Furthermore, a brief description of the factors that influence the utility and interpretation of PAI eDNA is also presented. The review establishes that factors such as biotic and abiotic, primer selection and taxonomic resolution, and indeterminate spatio-temporal scales impact the availability and longevity of eDNA. The study also identified the limitations that influence PAI detection and suggested possible solutions for better execution of these molecular approaches. Overcoming these research caveats will augment the assortment of PAI analysis through eDNA that could be vital for ecosystem health and integrity. This review forms a critical guide and offers prominent insights for ecologists, environmental managers and researchers to assess and evaluate plant-animal interaction through environmental DNA.
Assuntos
DNA Ambiental , Ecossistema , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Ecologia , Monitoramento Ambiental/métodos , Plantas/genéticaRESUMO
Heavy metal pollution has posed a severe danger to environmental stability due to its high toxicity and lack of biodegradability. The present study deals with the appraisement of tolerance shown by various bacteria in varied copper and iron concentrations. Among the 20 isolates, four isolates, GN2, SC5, SC8, and SC10, exhibiting more significant iron and copper tolerance, were selected and identified by 16 S ribosomal ribonucleic acid (rRNA) gene sequence analysis as Pantoea agglomerans strain GN2, Pantoea sp. strain SC5, Bacillus sp. strain SC8 and Priestia aryabhattaistrain SC10. The minimum inhibitory concentration of molecularly identified strains revealed that P. agglomerans strain GN2 showed tolerance to iron sulfate and copper sulfate upto 600 and 400 µg/mL, whereas Bacillus sp. SC8 (OQ202165) showed tolerance of 700 and 250 µg/mL were tolerant to iron sulfate and copper sulfate up to 700 and 150 µg/mL, respectively. Pantoea sp. strain SC5 showed significant tolerance to both heavy metals. The isolates were further studied for their ability to grow at varying temperatures and pH ranges. Most of the isolates showed optimal growth at 37°C and pH 7. However, Pantoea sp. SC5 was competent to have prominent growth at 45°C and pH 8.0. Microbial remediation, which is eco-friendly, has proven the most effective method for bioremediation of heavy metal-contaminated environments. Using heavy metal-resistant bacteria for microbial remediation of iron and copper-contaminated environments could be a viable and valuable strategy. These isolates could also be used to decontaminate heavy metal-polluted agricultural soils.
Assuntos
Bacillus , Metais Pesados , Poluentes do Solo , Cobre/farmacologia , Sulfato de Cobre , Metais Pesados/toxicidade , Bactérias , Ferro/farmacologia , Biodegradação Ambiental , Poluentes do Solo/toxicidadeRESUMO
Pesticide pollution in recent times has emerged as a grave environmental problem contaminating both aquatic and terrestrial ecosystems owing to their widespread use. Bioremediation using gene editing and system biology could be developed as an eco-friendly and proficient tool to remediate pesticide-contaminated sites due to its advantages and greater public acceptance over the physical and chemical methods. However, it is indispensable to understand the different aspects associated with microbial metabolism and their physiology for efficient pesticide remediation. Therefore, this review paper analyses the different gene editing tools and multi-omics methods in microbes to produce relevant evidence regarding genes, proteins and metabolites associated with pesticide remediation and the approaches to contend against pesticide-induced stress. We systematically discussed and analyzed the recent reports (2015-2022) on multi-omics methods for pesticide degradation to elucidate the mechanisms and the recent advances associated with the behaviour of microbes under diverse environmental conditions. This study envisages that CRISPR-Cas, ZFN and TALEN as gene editing tools utilizing Pseudomonas, Escherichia coli and Achromobacter sp. can be employed for remediation of chlorpyrifos, parathion-methyl, carbaryl, triphenyltin and triazophos by creating gRNA for expressing specific genes for the bioremediation. Similarly, systems biology accompanying multi-omics tactics revealed that microbial strains from Paenibacillus, Pseudomonas putida, Burkholderia cenocepacia, Rhodococcus sp. and Pencillium oxalicum are capable of degrading deltamethrin, p-nitrophenol, chlorimuron-ethyl and nicosulfuron. This review lends notable insights into the research gaps and provides potential solutions for pesticide remediation by using different microbe-assisted technologies. The inferences drawn from the current study will help researchers, ecologists, and decision-makers gain comprehensive knowledge of value and application of systems biology and gene editing in bioremediation assessments.
Assuntos
Praguicidas , Praguicidas/metabolismo , Biodegradação Ambiental , Edição de Genes , Multiômica , EcossistemaRESUMO
Marine environments accommodating diverse assortments of life constitute a great pool of differentiated natural resources. The cumulative need to remedy unpropitious effects of anthropogenic activities on estuaries and coastal marine ecosystems has propelled the development of effective bioremediation strategies. Marine bacteria producing biosurfactants are promising agents for bio-remediating oil pollution in marine environments, making them prospective candidates for enhancing oil recovery. Molecular omics technologies are considered an emerging field of research in ecological and diversity assessment owing to their utility in environmental surveillance and bioremediation of polluted sites. A thorough literature review was undertaken to understand the applicability of different omic techniques used for bioremediation assessment using marine bacteria. This review further establishes that for bioremediation of environmental pollutants (i.e. heavy metals, hydrocarbons, xenobiotic and numerous recalcitrant compounds), organisms isolated from marine environments can be better used for their removal. The literature survey shows that omics approaches can provide exemplary knowledge about microbial communities and their role in the bioremediation of environmental pollutants. This review centres on applications of marine bacteria in enhanced bioremediation, using the omics approaches that can be a vital biological contrivance in environmental monitoring to tackle environmental degradation. The paper aims to identify the gaps in investigations involving marine bacteria to help researchers, ecologists and decision-makers to develop a holistic understanding regarding their utility in bioremediation assessment.
Assuntos
Poluentes Ambientais , Xenobióticos , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Ecossistema , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Xenobióticos/metabolismoRESUMO
Over the past decade, a plethora of research has illuminated the multifaceted roles of hydrogen sulfide (H2S) in plant physiology. This gaseous molecule, endowed with signaling properties, plays a pivotal role in mitigating metal-induced oxidative stress and strengthening the plant's ability to withstand harsh environmental conditions. It fulfils several functions in regulating plant development while ameliorating the adverse impacts of environmental stressors. The intricate connections among nitric oxide (NO), hydrogen peroxide (H2O2), and hydrogen sulfide in plant signaling, along with their involvement in direct chemical processes, are contributory in facilitating post-translational modifications (PTMs) of proteins that target cysteine residues. Therefore, the present review offers a comprehensive overview of sulfur metabolic pathways regulated by hydrogen sulfide, alongside the advancements in understanding its biological activities in plant growth and development. Specifically, it centres on the physiological roles of H2S in responding to environmental stressors to explore the crucial significance of different exogenously administered hydrogen sulfide donors in mitigating the toxicity associated with heavy metals (HMs). These donors are of utmost importance in facilitating the plant development, stabilization of physiological and biochemical processes, and augmentation of anti-oxidative metabolic pathways. Furthermore, the review delves into the interaction between different growth regulators and endogenous hydrogen sulfide and their contributions to mitigating metal-induced phytotoxicity.
Assuntos
Sulfeto de Hidrogênio , Desenvolvimento Vegetal , Transdução de Sinais , Sulfeto de Hidrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Estresse Fisiológico , Plantas/metabolismo , Plantas/efeitos dos fármacosRESUMO
The mining industry has historically served as a critical reservoir of essential raw materials driving global economic progress. Nevertheless, the consequential by-product known as mine tailings has consistently produced a substantial footprint of environmental contamination. With annual discharges of mine tailings surpassing 10 billion tons globally, the need for effective remediation strategies is more pressing than ever as traditional physical and chemical remediation techniques are hindered by their high costs and limited efficacy. Phytoremediation utilizing plants for remediation of polluted soil has developed as a promising and eco-friendly approach to addressing mine tailings contamination. Furthermore, sequencing of genomic DNA and transcribed RNA extracted from mine tailings presents a pivotal opportunity to provide critical supporting insights for activities directed towards the reconstruction of ecosystem functions on contaminated lands. This review explores the growing prominence of phytoremediation and metagenomics as an ecologically sustainable techniques for rehabilitating mine-tailings. The present study envisages that plant species such as Solidago chilensis, Festuca arundinacea, Lolium perenne, Polygonum capitatum, Pennisetum purpureum, Maireana brevifolia, Prosopis tamarugo etc. could be utilized for the remediation of mine-tailings. Furthermore, a critical evaluation of the organic and inorganic ammendments that optimize conditions for the remediation of mine tailings is also provided. The focus of this review extends to the exploration of environmental genomics to characterize microbial communities in mining sites. By delving into the multifaceted dimensions of phytoremediation and genomics for mine tailings, this study contributes to the ongoing efforts to revitalize contaminated lands for a sustainable and environmentally friendly future.
Assuntos
Biodegradação Ambiental , Mineração , Poluentes do Solo , Poluentes do Solo/metabolismo , Plantas/metabolismo , Plantas/genética , Recuperação e Remediação Ambiental/métodos , Genômica , Microbiologia do Solo , Metagenômica/métodosRESUMO
The dearth of cardinal data on species presence, dispersion, abundance, and habitat prerequisites, besides the threats impeded by escalating human pressure has enormously affected biodiversity conservation. The innovative concept of eDNA, has been introduced as a way of overcoming many of the difficulties of rigorous conventional investigations, and is hence becoming a prominent and novel method for assessing biodiversity. Recently the demand for eDNA in ecology and conservation has expanded exceedingly, despite the lack of coordinated development in appreciation of its strengths and limitations. Therefore it is pertinent and indispensable to evaluate the extent and significance of eDNA-based investigations in terrestrial habitats and to classify and recognize the critical considerations that need to be accounted before using such an approach. Presented here is a brief review to summarize the prospects and constraints of utilizing eDNA in terrestrial ecosystems, which has not been explored and exploited in greater depth and detail in such ecosystems. Given these obstacles, we focused primarily on compiling the most current research findings from journals accessible in eDNA analysis that discuss terrestrial ecosystems (2012-2022). In the current evaluation, we also review advancements and limitations related to the eDNA technique.
RESUMO
Environmental contamination is triggered by various anthropogenic activities, such as using pesticides, toxic chemicals, industrial effluents, and metals. Pollution not only affects both lotic and lentic environments but also terrestrial habitats, substantially endangering plants, animals, and human wellbeing. The traditional techniques used to eradicate the pollutants from soil and water are considered expensive, environmentally harmful and, typically, inefficacious. Thus, to abate the detrimental consequences of heavy metals, phytoremediation is one of the sustainable options for pollution remediation. The process involved is simple, effective, and economically efficient with large-scale extensive applicability. This green technology and its byproducts have several other essential utilities. Phytoremediation, in principle, utilizes solar energy and has an extraordinary perspective for abating and assembling heavy metals. The technique of phytoremediation has developed in contemporary times as an efficient method and its success depends on plant species selection. Here in this synthesis, we are presenting a scoping review of phytoremediation, its basic principles, techniques, and potential anticipated prospects. Furthermore, a detailed overview pertaining to biochemical aspects, progression of genetic engineering, and the exertion of macrophytes in phytoremediation has been provided. Such a promising technique is economically effective as well as eco-friendly, decontaminating and remediating the pollutants from the biosphere.
RESUMO
The present study suggests that standardized methodology, careful site selection, and stratigraphy are essential for investigating ancient ecosystems in order to evaluate biodiversity and DNA-based time series. Based on specific keywords, this investigation reviewed 146 publications using the SCOPUS, Web of Science (WoS), PUBMED, and Google Scholar databases. Results indicate that environmental deoxyribose nucleic acid (eDNA) can be pivotal for assessing and conserving ecosystems. Our review revealed that in the last 12 years (January 2008-July 2021), 63% of the studies based on eDNA have been reported from aquatic ecosystems, 25% from marine habitats, and 12% from terrestrial environments. Out of studies conducted in aquatic systems using the environmental DNA (eDNA) technique, 63% of the investigations have been reported from freshwater ecosystems, with an utmost focus on fish diversity (40%). Further analysis of the literature reveals that during the same period, 24% of the investigations using the environmental DNA technique were carried out on invertebrates, 8% on mammals, 7% on plants, 6% on reptiles, and 5% on birds. The results obtained clearly indicate that the environmental DNA technique has a clear-cut edge over other biodiversity monitoring methods. Furthermore, we also found that eDNA, in conjunction with different dating techniques, can provide better insight into deciphering eco-evolutionary feedback. Therefore, an attempt has been made to offer extensive information on the application of dating methods for different taxa present in diverse ecosystems. Last, we provide suggestions and elucidations on how to overcome the caveats and delineate some of the research avenues that will likely shape this field in the near future. This paper aims to identify the gaps in environmental DNA (eDNA) investigations to help researchers, ecologists, and decision-makers to develop a holistic understanding of environmental DNA (eDNA) and its utility as a palaeoenvironmental contrivance.