Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Am J Hum Genet ; 111(7): 1330-1351, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815585

RESUMO

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.


Assuntos
Epilepsia , Transtornos do Neurodesenvolvimento , Ubiquitina-Proteína Ligases , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Deficiências do Desenvolvimento/genética , Metilação de DNA/genética , Epigênese Genética , Epilepsia/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Ubiquitina-Proteína Ligases/metabolismo
2.
J Inherit Metab Dis ; 43(6): 1333-1348, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681751

RESUMO

Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.


Assuntos
Defeitos Congênitos da Glicosilação/genética , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , Espasmos Infantis/genética , Biomarcadores , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico , Dieta Cetogênica , Feminino , Glicosilação , Humanos , Lactente , Masculino , Mutação , N-Acetilglucosaminiltransferases/química , Espasmos Infantis/diagnóstico , Transferrina/metabolismo
3.
Am J Hum Genet ; 99(3): 711-719, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545680

RESUMO

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development.


Assuntos
Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Genes Essenciais/genética , Deficiência Intelectual/genética , Antígenos de Histocompatibilidade Menor/genética , Mutação/genética , Splicing de RNA/genética , Animais , Encéfalo/anormalidades , Encéfalo/patologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Deficiências do Desenvolvimento/fisiopatologia , Anormalidades do Olho/genética , Feminino , Haploinsuficiência/genética , Cabeça/anormalidades , Heterozigoto , Humanos , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Antígenos de Histocompatibilidade Menor/análise , Antígenos de Histocompatibilidade Menor/metabolismo , Linhagem , RNA Mensageiro/análise , Coluna Vertebral/anormalidades , Síndrome , Peixe-Zebra/anormalidades , Peixe-Zebra/embriologia , Peixe-Zebra/genética
4.
Genet Med ; 21(5): 1240-1245, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30293991

RESUMO

PURPOSE: Clinical exome and gene panel testing can provide molecular diagnoses for patients with rare Mendelian disorders, but for many patients these tests are nonexplanatory. We investigated whether interrogation of alternative transcripts in known disease genes could provide answers for additional patients. METHODS: We integrated alternative transcripts for known neonatal epilepsy genes with RNA-Seq data to identify brain-expressed coding regions that are not evaluated by popular neonatal epilepsy clinical gene panel and exome tests. RESULTS: We found brain-expressed alternative coding regions in 89 (30%) of 292 neonatal epilepsy genes. The 147 regions encompass 15,713 bases that are noncoding in the primary transcripts analyzed by the clinical tests. Alternative coding regions from at least 5 genes carry reported pathogenic variants. Three candidate variants in these regions were identified in public exome data from 337 epilepsy patients. Incorporating alternative transcripts into the analysis of neonatal epilepsy genes in 44 patient genomes identified the pathogenic variant for the epilepsy case and 2 variants of uncertain significance (VUS) among the 43 control cases. CONCLUSION: Assessment of alternative transcripts in exon-based clinical genetic tests, including gene panel, exome, and genome sequencing, may provide diagnoses for patients for whom standard testing is unrevealing, without introducing many VUS.


Assuntos
Epilepsia Neonatal Benigna/diagnóstico , Testes Genéticos/métodos , Análise de Sequência de DNA/métodos , Estudos de Casos e Controles , Bases de Dados Genéticas , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia Neonatal Benigna/genética , Exoma/genética , Éxons/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Recém-Nascido , Masculino , Mutação , Sequenciamento do Exoma/métodos
5.
Genet Med ; 20(1): 98-108, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661489

RESUMO

PurposeThe study aimed at widening the clinical and genetic spectrum and assessing genotype-phenotype associations in FOXG1 syndrome due to FOXG1 variants.MethodsWe compiled 30 new and 53 reported patients with a heterozygous pathogenic or likely pathogenic variant in FOXG1. We grouped patients according to type and location of the variant. Statistical analysis of molecular and clinical data was performed using Fisher's exact test and a nonparametric multivariate test.ResultsAmong the 30 new patients, we identified 19 novel FOXG1 variants. Among the total group of 83 patients, there were 54 variants: 20 frameshift (37%), 17 missense (31%), 15 nonsense (28%), and 2 in-frame variants (4%). Frameshift and nonsense variants are distributed over all FOXG1 protein domains; missense variants cluster within the conserved forkhead domain. We found a higher phenotypic variability than previously described. Genotype-phenotype association revealed significant differences in psychomotor development and neurological features between FOXG1 genotype groups. More severe phenotypes were associated with truncating FOXG1 variants in the N-terminal domain and the forkhead domain (except conserved site 1) and milder phenotypes with missense variants in the forkhead conserved site 1.ConclusionsThese data may serve for improved interpretation of new FOXG1 sequence variants and well-founded genetic counseling.


Assuntos
Fatores de Transcrição Forkhead/genética , Estudos de Associação Genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Síndrome de Rett/diagnóstico , Síndrome de Rett/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
6.
Genet Med ; 19(12): 1367-1375, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28617419

RESUMO

PurposeImmunodeficiency screening has been added to many state-directed newborn screening programs. The current methodology is limited to screening for severe T-cell lymphopenia disorders. We evaluated the potential of genomic sequencing to augment current newborn screening for immunodeficiency, including identification of non-T cell disorders.MethodsWe analyzed whole-genome sequencing (WGS) and clinical data from a cohort of 1,349 newborn-parent trios by genotype-first and phenotype-first approaches. For the genotype-first approach, we analyzed predicted protein-impacting variants in 329 immunodeficiency-related genes in the WGS data. As a phenotype-first approach, electronic health records were used to identify children with clinical features suggestive of immunodeficiency. Genomes of these children and their parents were analyzed using a separate pipeline for identification of candidate pathogenic variants for rare Mendelian disorders.ResultsWGS provides adequate coverage for most known immunodeficiency-related genes. 13,476 distinct variants and 8,502 distinct predicted protein-impacting variants were identified in this cohort; five individuals carried potentially pathogenic variants requiring expert clinical correlation. One clinically asymptomatic individual was found genomically to have complement component 9 deficiency. Of the symptomatic children, one was molecularly identified as having an immunodeficiency condition and two were found to have other molecular diagnoses.ConclusionNeonatal genomic sequencing can potentially augment newborn screening for immunodeficiency.


Assuntos
Síndromes de Imunodeficiência/epidemiologia , Síndromes de Imunodeficiência/genética , Triagem Neonatal , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Curadoria de Dados , Feminino , Testes Genéticos , Genótipo , Humanos , Síndromes de Imunodeficiência/diagnóstico , Recém-Nascido , Masculino , Triagem Neonatal/métodos , Fenótipo
8.
Am J Med Genet A ; 167A(9): 2075-84, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25959030

RESUMO

Methylmalonic acidemia patients have complex rehabilitation needs that can be targeted to optimize societal independence and quality of life. Thirty-seven individuals with isolated MMA (28 mut, 5 cblA, 4 cblB), aged 2-33 years, were enrolled in a natural history study, and underwent age-appropriate clinical assessments to characterize impairments and disabilities. Neurological examination and brain imaging studies were used to document movement disorders and the presence of basal ganglia injury. A range of impairments and disabilities were identified by a team of physical medicine experts. Movement disorders, such as chorea and tremor, were common (n = 31, 83%), even among patients without evidence of basal ganglia injury. Joint hypermobility (n = 24, 69%) and pes planus (n = 22, 60%) were frequent and, in many cases, under-recognized. 23 (62%) patients required gastrostomy feedings. 18/31 patients >4 years old (58%) had difficulties with bathing and dressing. 16 of 23 school-aged patients received various forms of educational support. Five of the 10 adult patients were employed or in college; three lived independently. Unmet needs were identified in access to rehabilitation services, such as physical therapy (unavailable to 14/31), and orthotics (unavailable to 15/22). We conclude that patients with MMA are challenged by a number of functional limitations in essential activities of mobility, self-care, and learning, in great part caused by movement disorders and ligamentous laxity. Early assessment, referral, and implementation of age-appropriate rehabilitation services should significantly improve independence and quality of life.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/reabilitação , Pessoas com Deficiência/reabilitação , Necessidades e Demandas de Serviços de Saúde/estatística & dados numéricos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neuroimagem/métodos , Exame Neurológico/métodos , Qualidade de Vida , Autocuidado/métodos , Adulto Jovem
9.
HGG Adv ; 3(1): 100074, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047859

RESUMO

Robinow syndrome (RS) is a genetically heterogeneous disorder with six genes that converge on the WNT/planar cell polarity (PCP) signaling pathway implicated (DVL1, DVL3, FZD2, NXN, ROR2, and WNT5A). RS is characterized by skeletal dysplasia and distinctive facial and physical characteristics. To further explore the genetic heterogeneity, paralog contribution, and phenotypic variability of RS, we investigated a cohort of 22 individuals clinically diagnosed with RS from 18 unrelated families. Pathogenic or likely pathogenic variants in genes associated with RS or RS phenocopies were identified in all 22 individuals, including the first variant to be reported in DVL2. We retrospectively collected medical records of 16 individuals from this cohort and extracted clinical descriptions from 52 previously published cases. We performed Human Phenotype Ontology (HPO) based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Individuals with FZD2 variants clustered into two groups with demonstrable phenotypic differences between those with missense and truncating alleles. Probands with biallelic NXN variants clustered together with the majority of probands carrying DVL1, DVL2, and DVL3 variants, demonstrating no phenotypic distinction between the NXN-autosomal recessive and dominant forms of RS. While phenotypically similar diseases on the RS differential matched through HPO analysis, clustering using phenotype similarity score placed RS-associated phenotypes in a unique cluster containing WNT5A, FZD2, and ROR2 apart from non-RS-associated paralogs. Through human phenotype analyses of this RS cohort and OMIM clinical synopses of Mendelian disease, this study begins to tease apart specific biologic roles for non-canonical WNT-pathway proteins.

10.
Mol Genet Genomic Med ; 7(5): e648, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30916490

RESUMO

BACKGROUND: A family with skeletal and craniofacial anomalies is presented. Whole-exome sequencing (WES) analysis indicated a diagnosis of Larsen syndrome, although their clinical presentation does not include the hallmark joint dislocations typically observed in Larsen syndrome. METHODS: Patient consent for the sharing of de-identified clinical and genetic information, along with use of photographs for publication, was obtained. WES and variant segregation analysis by WES were performed by commercial laboratory, GeneDx (Gaithersburg, MD), on peripheral blood samples from the proband, her brother, and her parents using methods detailed on their website for test XomeDx Whole Exome Sequencing Trio (https://www.genedx.com/test-catalog/available-tests/xomedx-whole-exome-sequencing-trio/). WES uses next-generation sequencing (NGS) technology to assess for variants within the coding regions, or exons, of approximately 23,000 genes. For the FLNB gene (NM_001457.3), 100% of the coding region was covered at a minimum of 10x. GeneDx uses Sanger sequencing to confirm NGS variants. RESULTS: WES revealed a heterozygous pathogenic variant, p.Glu227Lys (c.679G>A), in the FLNB gene in three out of the four family members tested. This variant is associated with Larsen syndrome, a skeletal dysplasia condition with a wide range of phenotypic variability that usually includes congenital joint dislocations. CONCLUSION: This is a highly unusual presentation of Larsen syndrome in which the identifying hallmark trait is absent in the patients' phenotypes.


Assuntos
Luxações Articulares/genética , Osteocondrodisplasias/genética , Fenótipo , Adulto , Feminino , Filaminas/genética , Humanos , Lactente , Recém-Nascido , Luxações Articulares/patologia , Masculino , Osteocondrodisplasias/patologia , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA