RESUMO
Climate change is driving the tropicalization of temperate ecosystems by shifting the range edges of numerous species poleward. Over the past few decades, mangroves have rapidly displaced salt marshes near multiple poleward mangrove range limits, including in northeast Florida. It is uncertain whether such mangrove expansions are due to anthropogenic climate change or natural climate variability. We combined historical accounts from books, personal journals, scientific articles, logbooks, photographs, and maps with climate data to show that the current ecotone between mangroves and salt marshes in northeast Florida has shifted between mangrove and salt marsh dominance at least 6 times between the late 1700s and 2017 due to decadal-scale fluctuations in the frequency and intensity of extreme cold events. Model projections of daily minimum temperature from 2000 through 2100 indicate an increase in annual minimum temperature by 0.5 °C/decade. Thus, although recent mangrove range expansion should indeed be placed into a broader historical context of an oscillating system, climate projections suggest that the recent trend may represent a more permanent regime shift due to the effects of climate change.
RESUMO
Expansion of many tree species lags behind climate change projections. Extreme storms can rapidly overcome this lag, especially for coastal species, but how will storm-driven expansion shape intraspecific genetic variation? Do storms provide recruits only from the nearest sources, or from more distant sources? Answers to these questions have ecological and evolutionary implications, but empirical evidence is absent from the literature. In 2017, Hurricane Irma provided an opportunity to address this knowledge gap at the northern range limit of the neotropical black mangrove (Avicennia germinans) on the Atlantic coast of Florida, USA. We observed massive post-hurricane increases in beach-stranded A. germinans propagules at, and past, this species' present day range margin when compared to a previously surveyed nonhurricane year. Yet, propagule dispersal does not guarantee subsequent establishment and reproductive success (i.e., effective dispersal). We also evaluated prior effective dispersal along this coastline with isolated A. germinans trees identified beyond the most northern established population. We used 12 nuclear microsatellite loci to genotype 896 hurricane-driven drift propagules from nine sites and 10 isolated trees from four sites, determined their sources of origin, and estimated dispersal distances. Almost all drift propagules and all isolated trees came from the nearest sources. This research suggests that hurricanes are a prerequisite for poleward range expansion of a coastal tree species and that storms can shape the expanding gene pool by providing almost exclusively range-margin genotypes. These insights and empirical estimates of hurricane-driven dispersal distances should improve our ability to forecast distributional shifts of coastal species.
Assuntos
Avicennia/genética , Tempestades Ciclônicas , Variação Genética , Mudança Climática , Florida , Repetições de Microssatélites , Dispersão VegetalRESUMO
Globally, carbon-rich mangrove forests are deforested and degraded due to land-use and land-cover change (LULCC). The impact of mangrove deforestation on carbon emissions has been reported on a global scale; however, uncertainty remains at subnational scales due to geographical variability and field data limitations. We present an assessment of blue carbon storage at five mangrove sites across West Papua Province, Indonesia, a region that supports 10% of the world's mangrove area. The sites are representative of contrasting hydrogeomorphic settings and also capture change over a 25-years LULCC chronosequence. Field-based assessments were conducted across 255 plots covering undisturbed and LULCC-affected mangroves (0-, 5-, 10-, 15- and 25-year-old post-harvest or regenerating forests as well as 15-year-old aquaculture ponds). Undisturbed mangroves stored total ecosystem carbon stocks of 182-2,730 (mean ± SD: 1,087 ± 584) Mg C/ha, with the large variation driven by hydrogeomorphic settings. The highest carbon stocks were found in estuarine interior (EI) mangroves, followed by open coast interior, open coast fringe and EI forests. Forest harvesting did not significantly affect soil carbon stocks, despite an elevated dead wood density relative to undisturbed forests, but it did remove nearly all live biomass. Aquaculture conversion removed 60% of soil carbon stock and 85% of live biomass carbon stock, relative to reference sites. By contrast, mangroves left to regenerate for more than 25 years reached the same level of biomass carbon compared to undisturbed forests, with annual biomass accumulation rates of 3.6 ± 1.1 Mg C ha-1 year-1 . This study shows that hydrogeomorphic setting controls natural dynamics of mangrove blue carbon stocks, while long-term land-use changes affect carbon loss and gain to a substantial degree. Therefore, current land-based climate policies must incorporate landscape and land-use characteristics, and their related carbon management consequences, for more effective emissions reduction targets and restoration outcomes.
Assuntos
Carbono , Ecossistema , Biomassa , Conservação dos Recursos Naturais , Florestas , Indonésia , Áreas AlagadasRESUMO
Soil oxygen availability may influence blue carbon, which is carbon stored in coastal wetlands, by controlling the decomposition of soil organic matter. We are beginning to quantify soil oxygen availability in wetlands, but we lack a precise understanding of how oxygen controls soil carbon dynamics. In this paper, we synthesize existing data from oxic and anoxic wetland soil incubations to determine how oxygen controls carbon mineralization. We define the oxygen sensitivity of carbon mineralization as the ratio of carbon mineralization rate in oxic soil to this rate in anoxic soil, such that higher values of this ratio indicate greater sensitivity of carbon mineralization to oxygen. The estimates of oxygen sensitivity we derived from existing literature show a wide range of ratios, from 0.8 to 33, across wetlands. We then report oxygen sensitivities from an experimental mesocosm we developed to manipulate soil oxygen status in realistic soils. The variation in oxygen sensitivity we uncover from this systematic review and experiment indicates that Earth system models may misrepresent the oxygen sensitivity of carbon mineralization, and how it varies with context, in wetland soils. We suggest that altered soil oxygen availability could be an important driver of future blue carbon storage in coastal wetlands.
Assuntos
Solo , Áreas Alagadas , Carbono , OxigênioRESUMO
Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems.
Assuntos
Carbono , Áreas Alagadas , Austrália , Baías , Ecossistema , Sedimentos Geológicos , QueenslandRESUMO
Biotrophic fungal and oomycete pathogens alter carbohydrate metabolism in infected host tissues. Symptoms such as elevated soluble carbohydrate concentrations and increased invertase activity suggest that a pathogen-induced carbohydrate sink is established. To identify pathogen-induced regulators of carbohydrate sink strength, quantitative real-time polymerase chain reaction was used to measure transcript levels of invertase and hexose transporter genes in biotrophic pathogen-infected grapevine (Vitis vinifera) leaves. The hexose transporter VvHT5 was highly induced in coordination with the cell wall invertase gene VvcwINV by powdery and downy mildew infection. However, similar responses were also observed in response to wounding, suggesting that this is a generalized response to stress. Analysis of the VvHT5 promoter region indicated the presence of multiple abscisic acid (ABA) response elements, suggesting a role for ABA in the transition from source to sink under stress conditions. ABA treatment of grape leaves was found to reproduce the same gene-specific transcriptional changes as observed under biotic and abiotic stress conditions. Furthermore, the key regulatory ABA biosynthetic gene, VvNCED1, was activated under these same stress conditions. VvHT5 promoter::beta-glucuronidase-directed expression in transgenic Arabidopsis (Arabidopsis thaliana) was activated by infection with powdery mildew and by ABA treatment, and the expression was closely associated with vascular tissue adjacent to infected regions. Unlike VvHT1 and VvHT3, which appear to be predominantly involved in hexose transport in developing leaves and berries, VvHT5 appears to have a specific role in enhancing sink strength under stress conditions, and this is controlled through ABA. Our data suggest a central role for ABA in the regulation of VvcwINV and VvHT5 expression during the transition from source to sink in response to infection by biotrophic pathogens.
Assuntos
Ácido Abscísico/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Estresse Fisiológico , Vitis/enzimologia , beta-Frutofuranosidase/metabolismo , Ascomicetos/fisiologia , Parede Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Proteínas de Transporte de Monossacarídeos/genética , Oomicetos/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Vitis/genética , Vitis/microbiologia , beta-Frutofuranosidase/genéticaRESUMO
BACKGROUND: The accumulation of L-ascorbate (Asc) in fruits is influenced by environmental factors including light quantity. Fruit exposure to ambient light is often reduced by the surrounding leaf canopy, and can be altered by cultivation practices. The influence of reduced sunlight exposure on the accumulation of Asc and its catabolites was investigated in field-grown berries of the cultivated grapevine Vitis vinifera L. cv. Shiraz. RESULTS: Growth under sunlight-eliminated conditions resulted in reduced berry fresh weight, chlorosis and a reduced total L-ascorbate pool size. The concentration of the Asc catabolite L-tartaric acid (TA) was reduced in berries grown without light. Conversely, concentrations of oxalic acid (OA), an alternative catabolite of Asc, and malic acid (MA), were unaffected by shading the berries during development. Brief and significant reductions in transcription of the Asc metabolic genes were observed in shade-grown berries after 4 weeks of dark acclimatisation whilst a key TA biosynthetic gene was not regulated by light. CONCLUSIONS: The results demonstrate that light-regulation of Asc and TA occurs only at brief stages of development and that OA and MA accumulation is light independent. Additionally, the comparable ratios of TA product to Asc precursor under both light regimes suggest that the diversion of Asc to TA is driven by factors that are not responsive to light. These findings suggest that an altered light regime is not the key to manipulating TA or MA levels in the harvested berry.
Assuntos
Ácido Ascórbico/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Luz Solar , Tartaratos/metabolismo , Vitis/metabolismo , Aclimatação , Agricultura/métodos , Biomassa , Escuridão , Frutas/crescimento & desenvolvimento , Genes de Plantas , Malatos/metabolismo , Ácido Oxálico/metabolismo , Vitis/genética , Vitis/crescimento & desenvolvimentoRESUMO
Natal dispersal is a key demographic process for evaluating the population rate of change, especially for long-lived, highly mobile species. This process is largely unknown for reintroduced populations of endangered avian species. We evaluated natal dispersal distances (NDD) for male and female Whooping Cranes (Grus americana) introduced into two locations in central Wisconsin (Necedah National Wildlife Refuge, or NNWR, and the Eastern Rectangle, or ER) using a series of demographic, spatial, and life history-related covariates. Data were analyzed using gamma regression models with a log-link function and compared using Akaike information criterion corrected for small sample sizes (AICc). Whooping Cranes released in the ER dispersed 261% further than those released into NNWR, dispersal distance increased 4% for each additional nesting pair, decreased about 24% for males as compared to females, increased by 21% for inexperienced pairs, and decreased by 3% for each additional year of age. Natal philopatry, habitat availability or suitability, and competition for breeding territories may be influencing observed patterns of NDD. Whooping Cranes released in the ER may exhibit longer NDD due to fragmented habitat or conspecific attraction to established breeding pairs at NNWR. Additionally, sex-biased dispersal may be increasing in this population as there are more individuals from different natal sites forming breeding pairs. As the population grows and continues to disperse, the drivers of NDD patterns may change based on individual or population behavior.
RESUMO
Shrubs are invading into grasslands around the world, but we don't yet know how these shrubs will fare in a warmer future. In ecotonal coastal wetland ecosystems, woody mangroves are encroaching into herbaceous salt marshes owing to changes in temperature, precipitation, and sediment dynamics. Increasing mangrove biomass in wetlands often increases carbon storage, which is high in these productive ecosystems, but little is known about how mangrove growth will change in response to warming. To address this knowledge gap, we deployed warming experiments at three coastal wetland sites along a latitudinal gradient in northeast Florida where Avicennia germinans, black mangroves, are encroaching into salt marshes. We achieved air temperature warming (+1.6°C during the day) at all three sites and measured stem elongation, canopy height and area changes, and leaf and node number. After 2 yr of warming, we found that mangrove growth rate in height increased due to warming. Warming increased stem elongation by 130% over unwarmed control plots after 1 yr at the northern site. Mangrove growth in canopy area did not respond to warming. Site differences in growth rate were pronounced, and mangrove growth in both height and area were lowest at the northern site, despite greater impacts of warming at that site. We also found that area-based relative growth rate was five times higher across all treatments than height-based relative growth rate, indicating that mangroves are growing wider rather than taller in these ecotonal environments. Our findings indicate that the growth effect of experimental warming depends on site characteristics and growth parameter measured. We also propose that differential mangrove growth across the three sites may be driven by biotic factors such as the identity of the salt marsh species into which mangroves are encroaching. Our results suggest that, as seen in other ecosystems, wetland plants may respond most strongly to warming at their poleward range edge.
Assuntos
Avicennia , Ecossistema , Mudança Climática , Florida , Áreas AlagadasRESUMO
Mangroves are highly susceptible to oil exposure. Depending on the severity, oil exposure can result in initial defoliation and eventual recovery through to mass mortality and complete loss of habitat. Some aspects of the impact of oil on mangroves and their recovery are well studied, but the focus has been on short-term responses, and the understanding of the longer-term trajectory of mangrove recovery from oiling is very limited. Here, we combine field results from sampling in the two years following a significant oiling event, with analysis of canopy cover in aerial images from before the event to 26 years afterwards. Approximately 100 ha of a monospecific stand of Avicenna marina mangroves were oiled as a result of a spill from the Era tanker in Spencer Gulf in southern Australia in September 1992. While lightly oiled trees made a full recovery, trees in heavily oiled areas experienced mass defoliation and ultimately mortality within several months of the oiling event. An analysis of aerial images indicated that there was no recovery in heavily oiled areas for 10 years following the oiling event. Between 10 and 25 years, seedling establishment and growth saw canopy cover increase to 35% of pre-oiling cover within heavily oiled areas. Predictive modelling estimates that complete recovery of mangroves to pre-oiling cover will take 55 years (median prediction in 2047). Our findings indicate that although mangroves can recover following a heavy oiling event, the rate of recovery can be slow, with full recovery in the order of half a century, much longer than has previously been anticipated.
Assuntos
Avicennia , Poluição por Petróleo , Áreas Alagadas , Ecossistema , Plântula , Austrália do SulRESUMO
The development and uptake of citizen science and artificial intelligence (AI) techniques for ecological monitoring is increasing rapidly. Citizen science and AI allow scientists to create and process larger volumes of data than possible with conventional methods. However, managers of large ecological monitoring projects have little guidance on whether citizen science, AI, or both, best suit their resource capacity and objectives. To highlight the benefits of integrating the two techniques and guide future implementation by managers, we explore the opportunities, challenges, and complementarities of using citizen science and AI for ecological monitoring. We identify project attributes to consider when implementing these techniques and suggest that financial resources, engagement, participant training, technical expertise, and subject charisma and identification are important project considerations. Ultimately, we highlight that integration can supercharge outcomes for ecological monitoring, enhancing cost-efficiency, accuracy, and multi-sector engagement.
RESUMO
Policies aiming to preserve vegetated coastal ecosystems (VCE; tidal marshes, mangroves and seagrasses) to mitigate greenhouse gas emissions require national assessments of blue carbon resources. Here, we present organic carbon (C) storage in VCE across Australian climate regions and estimate potential annual CO2 emission benefits of VCE conservation and restoration. Australia contributes 5-11% of the C stored in VCE globally (70-185 Tg C in aboveground biomass, and 1,055-1,540 Tg C in the upper 1 m of soils). Potential CO2 emissions from current VCE losses are estimated at 2.1-3.1 Tg CO2-e yr-1, increasing annual CO2 emissions from land use change in Australia by 12-21%. This assessment, the most comprehensive for any nation to-date, demonstrates the potential of conservation and restoration of VCE to underpin national policy development for reducing greenhouse gas emissions.
Assuntos
Carbono/análise , Mudança Climática , Conservação dos Recursos Naturais , Áreas Alagadas , Austrália , EcossistemaRESUMO
From 1990-2001, we made 188 successful captures of 166 different greater sandhill cranes (Grus canadensis tabida) through experimental use of alpha-chloralose (AC). Most captures took place during September (72.3%; n = 136), followed by August (14.9%; n = 28), and October (12.8%; n = 24). Territorial pairs were captured more successfully than family groups. Overall morbidity (6.4%) and mortality (4.3%) were lower than most other capture techniques for sandhill cranes. Exertional myopathy (EM) was the most common complication observed using AC (3.7%). Sedation level (chi5(2) = 25.9, P < 0.01) and month of capture (chi2(2) = 12.3, P < 0.01) were both associated with the presence of EM in cranes captured with AC. A logistic regression model suggests lighter sedation and the months of August and October are potential risk factors for EM in sandhill cranes captured with AC in Wisconsin (USA).
Assuntos
Doenças das Aves/etiologia , Aves/fisiologia , Cloralose/farmacologia , Hipnóticos e Sedativos/farmacologia , Imobilização/efeitos adversos , Doenças Musculares/veterinária , Animais , Animais Selvagens , Doenças das Aves/mortalidade , Feminino , Modelos Logísticos , Masculino , Doenças Musculares/etiologia , Estações do Ano , WisconsinRESUMO
Seasonal adjustment of alpha-chloralose captures of sandhill cranes was associated with a modest increase in capture efficacy (+13%), decreased morbidity from exertional myopathy (-1.4%), and overall mortality (-1.7%) rates despite little change in sedation scores. Postcapture fluid administration also decreased confinement times by several hours over most sedation scores.
Assuntos
Aves/fisiologia , Cloralose/farmacologia , Hipnóticos e Sedativos/farmacologia , Animais , Animais Selvagens , Doenças das Aves/etiologia , Doenças das Aves/mortalidade , Doenças das Aves/prevenção & controle , Feminino , Seguimentos , Imobilização/efeitos adversos , Masculino , Doenças Musculares/etiologia , Doenças Musculares/prevenção & controle , Doenças Musculares/veterináriaRESUMO
Three hexose transporters (VvHT3, VvHT4, and VvHT5) were cloned from Vitis vinifera L. and functionally characterized in the hexose transport-impaired Saccharomyces cerevisiae mutant EBY.VW4000. Both VvHT4 and VvHT5 facilitated glucose uptake, with K(m)s of 137 muM and 89 muM, respectively. VvHT3 was not functional in the yeast system but a VvHT3:GFP (green fluorescent protein) fusion protein was targeted to the plasma membrane in plant cells. In young 'sink' leaves, transcript levels of all five VvHTs and a cell wall invertase (VvcwINV) were low. In mature leaves, there were increased levels of VvHT1, VvHT3, VvHT5, and VvcwINV transcripts, suggesting that mature leaves may have an increased capacity for apoplastic sucrose hydrolysis and hexose retrieval. In grape berries, VvHT1, VvHT2, and VvHT3 transcript levels were found to be significantly higher than those of VvHT4 and VvHT5. VvHT1 was most highly expressed early in berry development but decreased during the period of rapid sugar accumulation, while VvHT2 and VvHT3 expression remained high during this accumulation phase. VvcwINV expression occurred throughout berry development but peaked just prior to veraison. It is clear that the machinery to transport the hexose molecules produced through the cleavage of sucrose, by cell wall invertase, is present in the berry. This agrees with the suggestion that hexose accumulation to high levels during the ripening phase occurs through an apoplastic pathway. Interestingly, there is no direct relationship between VvHT gene expression and hexose accumulation, which suggests either that transcription is not the main determinant of transport activity or that other transport pathways are also active.