Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257534

RESUMO

Typical enteropathogenic Escherichia coli (tEPEC) is a leading cause of diarrhea and associated death in children worldwide. Atypical EPEC (aEPEC) lacks the plasmid encoding bundle-forming pili and is considered less virulent, but the molecular mechanism of virulence is poorly understood. We recently identified kittens as a host for aEPEC where intestinal epithelial colonization was associated with diarrheal disease and death. The purposes of this study were to (i) determine the genomic similarity between kitten aEPEC and human aEPEC isolates and (ii) identify genotypic or phenotypic traits associated with virulence in kitten aEPEC. We observed no differences between kitten and human aEPEC in core genome content or gene cluster sequence identities, and no distinguishing genomic content was observed between aEPEC isolates from kittens with nonclinical colonization (NC) versus those with lethal infection (LI). Variation in adherence patterns and ability to aggregate actin in cultured cells mirrored descriptions of human aEPEC. The aEPEC isolated from kittens with LI were significantly more motile than isolates from kittens with NC. Kittens may serve as a reservoir for aEPEC that is indistinguishable from human aEPEC isolates and may provide a needed comparative animal model for the study of aEPEC pathogenesis. Motility seems to be an important factor in pathogenesis of LI associated with aEPEC in kittens.


Assuntos
Gatos/genética , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genômica , Sorotipagem , Virulência/genética , Adolescente , Animais , Criança , Pré-Escolar , Infecções por Escherichia coli/microbiologia , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Sorogrupo
2.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358567

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a leading cause of moderate to severe diarrhea among young children in developing countries, and EPEC isolates can be subdivided into two groups. Typical EPEC (tEPEC) bacteria are characterized by the presence of both the locus of enterocyte effacement (LEE) and the plasmid-encoded bundle-forming pilus (BFP), which are involved in adherence and translocation of type III effectors into the host cells. Atypical EPEC (aEPEC) bacteria also contain the LEE but lack the BFP. In the current report, we describe the complete genome of outbreak-associated aEPEC isolate E110019, which carries four plasmids. Comparative genomic analysis demonstrated that the type III secreted effector EspT gene, an autotransporter gene, a hemolysin gene, and putative fimbrial genes are all carried on plasmids. Further investigation of 65 espT-containing E. coli genomes demonstrated that different espT alleles are associated with multiple plasmids that differ in their overall gene content from the E110019 espT-containing plasmid. EspT has been previously described with respect to its role in the ability of E110019 to invade host cells. While other type III secreted effectors of E. coli have been identified on insertion elements and prophages of the chromosome, we demonstrated in the current study that the espT gene is located on multiple unique plasmids. These findings highlight a role of plasmids in dissemination of a unique E. coli type III secreted effector that is involved in host invasion and severe diarrheal illness.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Plasmídeos/química , Sistemas de Secreção Tipo III/genética , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Criança , Mapeamento Cromossômico , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/metabolismo , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Filogenia , Plasmídeos/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
3.
PLoS Pathog ; 13(8): e1006545, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28806780

RESUMO

The AraC Negative Regulators (ANR) comprise a large family of virulence regulators distributed among diverse clinically important Gram-negative pathogens, including Vibrio spp., Salmonella spp., Shigella spp., Yersinia spp., Citrobacter spp., and pathogenic E. coli strains. We have previously reported broad effects of the ANR members on regulators of the AraC/XylS family. Here, we interrogate possible broader effects of the ANR members on the bacterial transcriptome. Our studies focused on Aar (AggR-activated regulator), an ANR family archetype in enteroaggregative E. coli (EAEC) isolate 042. Transcriptome analysis of EAEC strain 042, 042aar and 042aar(pAar) identified more than 200 genes that were differentially expressed (+/- 1.5 fold, p<0.05). Most of those genes are located on the bacterial chromosome (195 genes, 92.85%), and are associated with regulation, transport, metabolism, and pathogenesis, based on the predicted annotation; a considerable number of Aar-regulated genes encoded for hypothetical proteins (46 genes, 21.9%) and regulatory proteins (25, 11.9%). Notably, the transcriptional expression of three histone-like regulators, H-NS (orf1292), H-NS homolog (orf2834) and StpA, was down-regulated in the absence of aar and may explain some of the effects of Aar on gene expression. By employing a bacterial two-hybrid system, LacZ reporter assays, pull-down and electrophoretic mobility shift assay (EMSA) analysis, we demonstrated that Aar binds directly to H-NS and modulates H-NS-induced gene silencing. Importantly, Aar was highly expressed in the mouse intestinal tract and was found to be necessary for maximal H-NS expression. In conclusion, this work further extends our knowledge of genes under the control of Aar and its biological relevance in vivo.


Assuntos
Fator de Transcrição AraC/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Virulência/fisiologia , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/metabolismo , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase
4.
Artigo em Inglês | MEDLINE | ID: mdl-28674052

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a leading cause of severe infantile diarrhea in developing countries. Previous research has focused on the diversity of the EPEC virulence plasmid, whereas less is known regarding the genetic content and distribution of antibiotic resistance plasmids carried by EPEC. A previous study demonstrated that in addition to the virulence plasmid, reference EPEC strain B171 harbors a second, larger plasmid that confers antibiotic resistance. To further understand the genetic diversity and dissemination of antibiotic resistance plasmids among EPEC strains, we describe the complete sequence of an antibiotic resistance plasmid from EPEC strain B171. The resistance plasmid, pB171_90, has a completed sequence length of 90,229 bp, a GC content of 54.55%, and carries protein-encoding genes involved in conjugative transfer, resistance to tetracycline (tetA), sulfonamides (sulI), and mercury, as well as several virulence-associated genes, including the transcriptional regulator hha and the putative calcium sequestration inhibitor (csi). In silico detection of the pB171_90 genes among 4,798 publicly available E. coli genome assemblies indicates that the unique genes of pB171_90 (csi and traI) are primarily restricted to genomes identified as EPEC or enterotoxigenic E. coli However, conserved regions of the pB171_90 plasmid containing genes involved in replication, stability, and antibiotic resistance were identified among diverse E. coli pathotypes. Interestingly, pB171_90 also exhibited significant similarity with a sequenced plasmid from Shigella dysenteriae type I. Our findings demonstrate the mosaic nature of EPEC antibiotic resistance plasmids and highlight the need for additional sequence-based characterization of antibiotic resistance plasmids harbored by pathogenic E. coli.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli Enteropatogênica/efeitos dos fármacos , Escherichia coli Enteropatogênica/genética , Plasmídeos/genética , Antiporters/genética , Proteínas de Bactérias/genética , Sequência de Bases , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano/genética , Mercúrio/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Plasmídeos/isolamento & purificação , Análise de Sequência de DNA , Shigella dysenteriae/efeitos dos fármacos , Shigella dysenteriae/genética , Sulfonamidas/farmacologia , Tetraciclina/farmacologia
5.
Proc Natl Acad Sci U S A ; 111(51): 18327-32, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489107

RESUMO

Uropathogenic Escherichia coli (UPEC) is the predominant etiological agent of uncomplicated urinary tract infection (UTI), manifested by inflammation of the urinary bladder, in humans and is a major global public health concern. Molecular pathogenesis of UPEC has been primarily examined using murine models of UTI. Translational research to develop novel therapeutics against this major pathogen, which is becoming increasingly antibiotic resistant, requires a thorough understanding of mechanisms involved in pathogenesis during human UTIs. Total RNA-sequencing (RNA-seq) and comparative transcriptional analysis of UTI samples to the UPEC isolates cultured in human urine and laboratory medium were used to identify novel fitness genes that were specifically expressed during human infection. Evidence for UPEC genes involved in ion transport, including copper efflux, nickel and potassium import systems, as key fitness factors in uropathogenesis were generated using an experimental model of UTI. Translational application of this study was investigated by targeting Cus, a bacterial copper efflux system. Copper supplementation in drinking water reduces E. coli colonization in the urinary bladder of mice. Additionally, our results suggest that anaerobic processes in UPEC are involved in promoting fitness during UTI in humans. In summary, RNA-seq was used to establish the transcriptional signature in UPEC during naturally occurring, community acquired UTI in women and multiple novel fitness genes used by UPEC during human infection were identified. The repertoire of UPEC genes involved in UTI presented here will facilitate further translational studies to develop innovative strategies against UTI caused by UPEC.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Infecções Urinárias/microbiologia , Escherichia coli/fisiologia , Humanos , Infecções Urinárias/imunologia
6.
Infect Immun ; 84(8): 2362-2371, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271741

RESUMO

Enteroinvasive Escherichia coli (EIEC) is a unique pathovar that has a pathogenic mechanism nearly indistinguishable from that of Shigella species. In contrast to isolates of the four Shigella species, which are widespread and can be frequent causes of human illness, EIEC causes far fewer reported illnesses each year. In this study, we analyzed the genome sequences of 20 EIEC isolates, including 14 first described in this study. Phylogenomic analysis of the EIEC genomes demonstrated that 17 of the isolates are present in three distinct lineages that contained only EIEC genomes, compared to reference genomes from each of the E. coli pathovars and Shigella species. Comparative genomic analysis identified genes that were unique to each of the three identified EIEC lineages. While many of the EIEC lineage-specific genes have unknown functions, those with predicted functions included a colicin and putative proteins involved in transcriptional regulation or carbohydrate metabolism. In silico detection of the Shigella virulence plasmid (pINV), which is essential for the invasion of host cells, demonstrated that a form of pINV was present in nearly all EIEC genomes, but the Mxi-Spa-Ipa region of the plasmid that encodes the invasion-associated proteins was absent from several of the EIEC isolates. The comparative genomic findings in this study support the hypothesis that multiple EIEC lineages have evolved independently from multiple distinct lineages of E. coli via the acquisition of the Shigella virulence plasmid and, in some cases, the Shigella pathogenicity islands.


Assuntos
Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Escherichia coli/classificação , Escherichia coli/genética , Genoma Bacteriano , Genômica , Shigella/classificação , Shigella/genética , Biologia Computacional/métodos , Escherichia coli Enteropatogênica/isolamento & purificação , Genes Bacterianos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fases de Leitura Aberta , Filogenia , Plasmídeos/genética , Virulência/genética
7.
Proc Natl Acad Sci U S A ; 110(31): 12810-5, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858472

RESUMO

The attaching and effacing Escherichia coli (AEEC) are characterized by the presence of a type III secretion system encoded by the locus of enterocyte effacement (LEE). Enterohemorrhagic E. coli (EHEC) are often identified as isolates that are LEE+ and carry the Shiga toxin (stx)-encoding phage, which are labeled Shiga toxin-producing E. coli; whereas enteropathogenic E. coli (EPEC) are LEE+ and often carry the EPEC adherence factor plasmid-encoded bundle-forming pilus (bfp) genes. All other LEE+/bfp-/stx- isolates have been historically designated atypical EPEC. These groups have been defined based on the presence or absence of a limited number of virulence factors, many of which are encoded on mobile elements. This study describes the comparative analysis of the genomes of 114 LEE+ E. coli isolates. Based on a whole-genome phylogeny and analysis of type III secretion system effectors, the AEEC are divided into five distinct genomic lineages. The LEE+/stx+/bfp- genomes were primarily divided into two genomic lineages, the O157/O55 EHEC1 and non-O157 EHEC2. The LEE+/bfp+/stx- AEEC isolates sequenced in this study separated into the EPEC1, EPEC2, and EPEC4 genomic lineages. A multiplex PCR assay for identification of each of these AEEC genomic lineages was developed. Of the 114 AEEC genomes analyzed, 31 LEE+ isolates were not in any of the known AEEC lineages and thus represent unclassified AEEC that in most cases are more similar to other E. coli pathovars than to text modification AEEC. Our findings demonstrate evolutionary relationships among diverse AEEC pathogens and the utility of phylogenomics for lineage-specific identification of AEEC clinical isolates.


Assuntos
Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/genética , Evolução Molecular , Genoma Bacteriano/fisiologia , Filogenia , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Aderência Bacteriana/genética , Enterócitos/microbiologia , Proteínas de Escherichia coli/genética
8.
Infect Immun ; 83(10): 4103-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26238712

RESUMO

Attaching and effacing Escherichia coli (AEEC) strains are a genomically diverse group of diarrheagenic E. coli strains that are characterized by the presence of the locus of enterocyte effacement (LEE) genomic island, which encodes a type III secretion system that is essential to virulence. AEEC strains can be further classified as either enterohemorrhagic E. coli (EHEC), typical enteropathogenic E. coli (EPEC), or atypical EPEC, depending on the presence or absence of the Shiga toxin genes or bundle-forming pilus (BFP) genes. Recent AEEC genomic studies have focused on the diversity of the core genome, and less is known regarding the genetic diversity and relatedness of AEEC plasmids. Comparative genomic analyses in this study demonstrated genetic similarity among AEEC plasmid genes involved in plasmid replication conjugative transfer and maintenance, while the remainder of the plasmids had sequence variability. Investigation of the EPEC adherence factor (EAF) plasmids, which carry the BFP genes, demonstrated significant plasmid diversity even among isolates within the same phylogenomic lineage, suggesting that these EAF-like plasmids have undergone genetic modifications or have been lost and acquired multiple times. Global transcriptional analyses of the EPEC prototype isolate E2348/69 and two EAF plasmid mutants of this isolate demonstrated that the plasmid genes influence the expression of a number of chromosomal genes in addition to the LEE. This suggests that the genetic diversity of the EAF plasmids could contribute to differences in the global virulence regulons of EPEC isolates.


Assuntos
Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/genética , Plasmídeos/genética , Escherichia coli Enteropatogênica/classificação , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Variação Genética , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Plasmídeos/metabolismo , Virulência
9.
Infect Immun ; 83(4): 1443-50, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25624354

RESUMO

The emergence and spread of extended-spectrum beta-lactamases and carbapenemases among common bacterial pathogens are threatening our ability to treat routine hospital- and community-acquired infections. With the pipeline for new antibiotics virtually empty, there is an urgent need to develop novel therapeutics. Bacteria require iron to establish infection, and specialized pathogen-associated iron acquisition systems like yersiniabactin, common among pathogenic species in the family Enterobacteriaceae, including multidrug-resistant Klebsiella pneumoniae and pathogenic Escherichia coli, represent potentially novel therapeutic targets. Although the yersiniabactin system was recently identified as a vaccine target for uropathogenic E. coli (UPEC)-mediated urinary tract infection (UTI), its contribution to UPEC pathogenesis is unknown. Using an E. coli mutant (strain 536ΔfyuA) unable to acquire yersiniabactin during infection, we established the yersiniabactin receptor as a UPEC virulence factor during cystitis and pyelonephritis, a fitness factor during bacteremia, and a surface-accessible target of the experimental FyuA vaccine. In addition, we determined through transcriptome sequencing (RNA-seq) analyses of RNA from E. coli causing cystitis in women that iron acquisition systems, including the yersiniabactin system, are highly expressed by bacteria during natural uncomplicated UTI. Given that yersiniabactin contributes to the virulence of several pathogenic species in the family Enterobacteriaceae, including UPEC, and is frequently associated with multidrug-resistant strains, it represents a promising novel target to combat antibiotic-resistant infections.


Assuntos
Cistite/prevenção & controle , Proteínas de Escherichia coli/genética , Fenóis/metabolismo , Pielonefrite/prevenção & controle , Receptores de Superfície Celular/genética , Tiazóis/metabolismo , Escherichia coli Uropatogênica/patogenicidade , Animais , Anticorpos Monoclonais/farmacologia , Vacinas Bacterianas/imunologia , Cistite/microbiologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos CBA , Fenóis/antagonistas & inibidores , Fenóis/imunologia , Pielonefrite/microbiologia , Receptores de Superfície Celular/imunologia , Tiazóis/antagonistas & inibidores , Tiazóis/imunologia , Infecções Urinárias/microbiologia , Infecções Urinárias/prevenção & controle , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/imunologia
10.
Antimicrob Agents Chemother ; 58(10): 5947-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25070096

RESUMO

The whole-genome sequence of a carbapenem-resistant Klebsiella pneumoniae strain, PittNDM01, which coproduces NDM-1 and OXA-232 carbapenemases, was determined in this study. The use of single-molecule, real-time (SMRT) sequencing provided a closed genome in a single sequencing run. K. pneumoniae PittNDM01 has a single chromosome of 5,348,284 bp and four plasmids: pPKPN1 (283,371 bp), pPKPN2 (103,694 bp), pPKPN3 (70,814 bp), and pPKPN4 (6,141 bp). The contents of the chromosome were similar to that of the K. pneumoniae reference genome strain MGH 78578, with the exception of a large inversion spanning 23.3% of the chromosome. In contrast, three of the four plasmids are unique. The plasmid pPKPN1, an IncHI1B-like plasmid, carries the blaNDM-1, armA, and qnrB1 genes, along with tellurium and mercury resistance operons. blaNDM-1 is carried on a unique structure in which Tn125 is further bracketed by IS26 downstream of a class 1 integron. The IncFIA-like plasmid pPKPN3 also carries an array of resistance elements, including blaCTX-M-15 and a mercury resistance operon. The ColE-type plasmid pPKPN4 carrying blaOXA-232 is identical to a plasmid previously reported from France. SMRT sequencing was useful in resolving the complex bacterial genomic structures in the de novo assemblies.


Assuntos
Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Óperon/genética , Plasmídeos/genética , beta-Lactamases/genética
11.
Antimicrob Agents Chemother ; 58(8): 4814-25, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914121

RESUMO

The IncA/C plasmids have been implicated for their role in the dissemination of ß-lactamases, including gene variants that confer resistance to expanded-spectrum cephalosporins, which are often the treatment of last resort against multidrug-resistant, hospital-associated pathogens. A bla(FOX-5) gene was detected in 14 Escherichia coli and 16 Klebsiella isolates that were cultured from perianal swabs of patients admitted to an intensive care unit (ICU) of the University of Maryland Medical Center (UMMC) in Baltimore, MD, over a span of 3 years. Four of the FOX-encoding isolates were obtained from subsequent samples of patients that were initially negative for an AmpC ß-lactamase upon admission to the ICU, suggesting that the AmpC ß-lactamase-encoding plasmid was acquired while the patient was in the ICU. The genomes of five E. coli isolates and six Klebsiella isolates containing bla(FOX-5) were selected for sequencing based on their plasmid profiles. An ∼ 167-kb IncA/C plasmid encoding the FOX-5 ß-lactamase, a CARB-2 ß-lactamase, additional antimicrobial resistance genes, and heavy metal resistance genes was identified. Another FOX-5-encoding IncA/C plasmid that was nearly identical except for a variable region associated with the resistance genes was also identified. To our knowledge, these plasmids represent the first FOX-5-encoding plasmids sequenced. We used comparative genomics to describe the genetic diversity of a plasmid encoding a FOX-5 ß-lactamase relative to the whole-genome diversity of 11 E. coli and Klebsiella isolates that carry this plasmid. Our findings demonstrate the utility of whole-genome sequencing for tracking of plasmid and antibiotic resistance gene distribution in health care settings.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Genoma Bacteriano , Klebsiella pneumoniae/genética , Plasmídeos/química , Adulto , Idoso , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefalosporinas , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Feminino , Expressão Gênica , Variação Genética , Humanos , Unidades de Terapia Intensiva , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/metabolismo , Masculino , Maryland , Pessoa de Meia-Idade , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plasmídeos/metabolismo , Análise de Sequência de DNA , beta-Lactamases/genética , beta-Lactamases/metabolismo
12.
Antimicrob Agents Chemother ; 58(4): 1879-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395222

RESUMO

A unique Klebsiella species strain, 10982, was cultured from a perianal swab specimen obtained from a patient in the University of Maryland Medical Center intensive care unit. Klebsiella sp. 10982 possesses a large IncA/C multidrug resistance plasmid encoding a novel FOX AmpC ß-lactamase designated FOX-10. A novel variant of the LEN ß-lactamase was also identified. Genome sequencing and bioinformatic analysis demonstrated that this isolate contains genes associated with nitrogen fixation, allantoin metabolism, and citrate fermentation. These three gene regions are typically present in either Klebsiella pneumoniae clinical isolates or Klebsiella nitrogen-fixing endophytes but usually not in the same organism. Phylogenomic analysis of Klebsiella sp. 10982 and sequenced Klebsiella genomes demonstrated that Klebsiella sp. 10982 is present on a branch that is located intermediate between the genomes of nitrogen-fixing endophytes and K. pneumoniae clinical isolates. Metabolic features identified in the genome of Klebsiella sp. 10982 distinguish this isolate from other Klebsiella clinical isolates. These features include the nitrogen fixation (nif) gene cluster, which is typically present in endophytic Klebsiella isolates and is absent from Klebsiella clinical isolates. Additionally, the Klebsiella sp. 10982 genome contains genes associated with allantoin metabolism, which have been detected primarily in K. pneumoniae isolates from liver abscesses. Comparative genomic analysis of Klebsiella sp. 10982 demonstrated that this organism has acquired genes conferring new metabolic strategies and novel antibiotic resistance alleles, both of which may enhance its ability to colonize the human body.


Assuntos
Alelos , Resistência Microbiana a Medicamentos/genética , Klebsiella/genética , Genômica , Humanos , Klebsiella/classificação , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Filogenia , Reação em Cadeia da Polimerase
13.
J Bacteriol ; 195(19): 4476-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23913321

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a leading cause of infantile diarrhea in developing countries. EPEC strain E2348/69 is used worldwide as a prototype to study EPEC genetics and disease. However, isolates of E2348/69 differ phenotypically, reflecting a history of in vitro selection. To identify the genomic and phenotypic changes in the prototype strain, we sequenced the genome of the nalidixic acid-resistant (Nal(r)) E2348/69 clone. We also sequenced a recent nleF mutant derived by one-step PCR mutagenesis from the Nal(r) strain. The sequencing results revealed no unintended changes between the mutant and the parent strain. However, loss of the pE2348-2 plasmid and 3 nonsynonymous mutations were found in comparison to the published streptomycin-resistant (Str(r)) E2348/69 reference genome. One mutation is a conservative amino acid substitution in ftsK. Another, in gyrA, is a mutation known to result in resistance to nalidixic acid. The third mutation converts a stop codon to a tryptophan, predicted to result in the fusion of hflD, the lysogenization regulator, to purB. The purB gene encodes an adenylosuccinate lyase involved in purine biosynthesis. The Nal(r) clone has a lower growth rate than the Str(r) isolate when cultured in minimal media, a difference which is corrected upon addition of adenine or by genetic complementation with purB. Addition of adenine or genetic complementation also restored the invasion efficiency of the Nal(r) clone. This report reconciles longstanding inconsistencies in phenotypic properties of an archetypal strain and provides both reassurance and cautions regarding intentional and unintentional evolution in vitro.


Assuntos
Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/metabolismo , Evolução Biológica , Genoma Bacteriano , Genômica/métodos , Genótipo , Dados de Sequência Molecular , Mutação , Fenótipo
14.
Nat Commun ; 14(1): 1400, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918537

RESUMO

Escherichia coli is a frequent member of the healthy human gastrointestinal microbiota, as well as an important human pathogen. Previous studies have focused on the genomic diversity of the pathogenic E. coli and much remains unknown about the non-diarrheagenic E. coli residing in the human gut, particularly among young children in low and middle income countries. Also, gaining additional insight into non-diarrheagenic E. coli is important for understanding gut health as non-diarrheagenic E. coli can prevent infection by diarrheagenic bacteria. In this study we examine the genomic diversity of non-diarrheagenic fecal E. coli from male and female children with or without diarrhea from countries in sub-Saharan Africa and south Asia as part of the Global Enteric Multicenter Study (GEMS). We find that these E. coli exhibit considerable genetic diversity as they were identified in all E. coli phylogroups and an Escherichia cryptic clade. Although these fecal E. coli lack the characteristic virulence factors of diarrheagenic E. coli pathotypes, many exhibit remarkable genomic similarity to previously described diarrheagenic isolates with differences attributed to mobile elements. This raises an important question of whether these non-diarrheagenic fecal E. coli may have at one time possessed the mobile element-encoded virulence factors of diarrheagenic pathotypes or may have the potential to acquire these virulence factors.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Criança , Masculino , Feminino , Pré-Escolar , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Ásia Meridional , Fatores de Virulência/genética , África Subsaariana/epidemiologia , Genômica
15.
mSphere ; 8(6): e0040823, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37830809

RESUMO

IMPORTANCE: Given the genomic diversity between S. flexneri serotypes and the paucity of data to support serotype-specific phenotypic differences, we applied in silico and in vitro functional analyses of archetype strains of 2457T (Sf2a), J17B (Sf3a), and CH060 (Sf6). These archetype strains represent the three leading S. flexneri serotypes recommended for inclusion in multivalent vaccines. Characterizing the genomic and phenotypic variation among these clinically prevalent serotypes is an important step toward understanding serotype-specific host-pathogen interactions to optimize the efficacy of multivalent vaccines and therapeutics. This study underpins the importance for further large-scale serotype-targeted analyses.


Assuntos
Genômica , Shigella flexneri , Shigella flexneri/genética , Sorogrupo , Perfilação da Expressão Gênica , Vacinas Combinadas
16.
Microbiol Spectr ; 11(4): e0155623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358436

RESUMO

Individuals with cystic fibrosis (CF) suffer from frequent and recurring microbial airway infections. The Gram-negative bacterium Pseudomonas aeruginosa is one of the most common organisms isolated from CF patient airways. P. aeruginosa establishes chronic infections that persist throughout a patient's lifetime and is a major cause of morbidity and mortality. Throughout the course of infection, P. aeruginosa must evolve and adapt from an initial state of early, transient colonization to chronic colonization of the airways. Here, we examined isolates of P. aeruginosa from children under the age of 3 years old with CF to determine genetic adaptations the bacterium undergoes during this early stage of colonization and infection. These isolates were collected when early aggressive antimicrobial therapy was not the standard of care and therefore highlight strain evolution under limited antibiotic pressure. Examination of specific phenotypic adaptations, such as lipid A palmitoylation, antibiotic resistance, and loss of quorum sensing, did not reveal a clear genetic basis for such changes. Additionally, we demonstrate that the geography of patient origin, within the United States or among other countries, does not appear to significantly influence genetic adaptation. In summary, our results support the long-standing model that patients acquire individual isolates of P. aeruginosa that subsequently become hyperadapted to the patient-specific airway environment. This study provides a multipatient genomic analysis of isolates from young CF patients in the United States and contributes data regarding early colonization and adaptation to the growing body of research about P. aeruginosa evolution in the context of CF airway disease. IMPORTANCE Chronic lung infection with Pseudomonas aeruginosa is of major concern for patients with cystic fibrosis (CF). During infection, P. aeruginosa undergoes genomic and functional adaptation to the hyperinflammatory CF airway, resulting in worsening lung function and pulmonary decline. All studies that describe these adaptations use P. aeruginosa obtained from older children or adults during late chronic lung infection; however, children with CF can be infected with P. aeruginosa as early as 3 months of age. Therefore, it is unclear when these genomic and functional adaptations occur over the course of CF lung infection, as access to P. aeruginosa isolates in children during early infection is limited. Here, we present a unique cohort of CF patients who were identified as being infected with P. aeruginosa at an early age prior to aggressive antibiotic therapy. Furthermore, we performed genomic and functional characterization of these isolates to address whether chronic CF P. aeruginosa phenotypes are present during early infection.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Pseudomonas aeruginosa/genética , Infecções por Pseudomonas/microbiologia , Pulmão/microbiologia , Genômica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
17.
Microbiol Spectr ; 11(4): e0177523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37289087

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKp) is a pathogen of significant concern to public health, as it has become increasingly associated with difficult-to-treat community-acquired and hospital-associated infections. Transmission of K. pneumoniae between patients through interactions with shared health care personnel (HCP) has been described as a source of infection in health care settings. However, it is not known whether specific lineages or isolates of K. pneumoniae are associated with increased transmission. Thus, we used whole-genome sequencing to analyze the genetic diversity of 166 carbapenem-resistant K. pneumoniae isolates from five U.S. hospitals in four states as part of a multicenter study examining risk factors for glove and gown contamination by carbapenem-resistant Enterobacterales (CRE). The CRKp isolates exhibited considerable genomic diversity with 58 multilocus sequence types (STs), including four newly designated STs. ST258 was the most prevalent ST, representing 31% (52/166) of the CRKp isolates, but was similarly prevalent among patients who had high, intermediate, and low CRKp transmission. Increased transmission was associated with clinical characteristics including a nasogastric (NG) tube or an endotracheal tube or tracheostomy (ETT/Trach). Overall, our findings provide important insight into the diversity of CRKp associated with transmission from patients to the gloves and gowns of HCP. These findings suggest that certain clinical characteristics and the presence of CRKp in the respiratory tract, rather than specific lineages or genetic content, are more often associated with increased transmission of CRKp from patients to HCP. IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae (CRKp) is a significant public health concern that has contributed to the spread of carbapenem resistance and has been linked to high morbidity and mortality. Transmission of K. pneumoniae among patients through interactions with shared health care personnel (HCP) has been described as a source of infection in health care settings; however, it remains unknown whether particular bacterial characteristics are associated with increased CRKp transmission. Using comparative genomics, we demonstrate that CRKp isolates associated with high or intermediate transmission exhibit considerable genomic diversity, and there were no K. pneumoniae lineages or genes that were universally predictive of increased transmission. Our findings suggest that certain clinical characteristics and the presence of CRKp, rather than specific lineages or genetic content of CRKp, are more often associated with increased transmission of CRKp from patients to HCP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/microbiologia , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Atenção à Saúde , Testes de Sensibilidade Microbiana , beta-Lactamases
18.
J Bacteriol ; 194(11): 3028-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582383

RESUMO

Klebsiella oxytoca strain 11492-1 was isolated from a perianal swab culture from a patient at the University of Maryland Medical Center in 2005. The K. oxytoca 11492-1 draft genome contains multiple antibiotic resistance genes, including a FOX-5 AmpC ß-lactamase encoded on a large IncA/C plasmid.


Assuntos
Proteínas de Bactérias/metabolismo , Infecção Hospitalar/microbiologia , Genoma Bacteriano , Klebsiella oxytoca/enzimologia , Klebsiella oxytoca/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Humanos , Klebsiella oxytoca/classificação , Klebsiella oxytoca/isolamento & purificação , Dados de Sequência Molecular , beta-Lactamases/genética
19.
J Bacteriol ; 194(11): 3026-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582382

RESUMO

We report the draft genome sequences of the collection referred to as the Escherichia coli DECA collection, which was assembled to contain representative isolates of the 15 most common diarrheagenic clones in humans (http://shigatox.net/new/). These genomes represent a valuable resource to the community of researchers who examine these enteric pathogens.


Assuntos
Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Genoma Bacteriano , Sequência de Bases , Pré-Escolar , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular
20.
mSphere ; 7(3): e0011622, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35578992

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a serious public health concern in the United States. Patients colonized and/or infected can transmit MRSA to healthcare workers and subsequent patients However, the components of this transmission chain are just becoming evident, including certain patient factors, specific patient-healthcare worker interactions, and microbial factors. We conducted a comparative genomic analysis of 388 isolates from four hospitals in three states: Maryland, California, and New York. Isolates from nasal surveillance or clinical cultures were categorized as high, moderate, or low transmission surrogate outcomes based on the number of times the species was identified on the gloves or gowns of healthcare providers. The comparative analyses included a single gene, multigene, and core genome phylogenetic analysis, as well as a genome-wide association analysis to identify molecular signatures associated with the observed transmission surrogate outcomes, geographic origin, or sample source of isolation. Based on the phylogenetic analysis, 95% (n = 372) of the MRSA isolates were from four well-described genomic clades, with most of the isolates being part of the USA300 containing clade (n = 187; 48%). Genome-wide association studies also identified genes that were exclusive or prevalent among specific geographic locations. The identified genes provide insights into the transmission dynamics of MRSA isolates providing additional insights into the basis of the geographical differences of MRSA for molecular diagnostics. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is considered a serious threat to public health and contributes to the dissemination of S. aureus in both the healthcare and community setting. Transmission of MRSA between patients via healthcare worker (HCW) has been described. However, what is not understood are the genetic determinants that contribute to the transmission of MRSA from patients to HCWs. In this study, we demonstrated that certain genes may be associated with transmission in the hospital setting.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Estudo de Associação Genômica Ampla , Genômica , Hospitais , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Filogenia , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA