Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2302761120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109527

RESUMO

For degradation of ß-lactam antibiotics pollution in waters, the strained ß-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening ß-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the ß-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common ß-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of ß-lactam antibiotics pollutants by the only energy source available, the sunlight.


Assuntos
Poluentes Ambientais , Antibióticos beta Lactam , Temperatura Alta , Domínio Catalítico , Ácidos de Lewis , Antibacterianos/metabolismo , beta-Lactamas , Monobactamas
2.
Proc Natl Acad Sci U S A ; 119(35): e2114064119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994659

RESUMO

Plants are resistant to most microbial species due to nonhost resistance (NHR), providing broad-spectrum and durable immunity. However, the molecular components contributing to NHR are poorly characterised. We address the question of whether failure of pathogen effectors to manipulate nonhost plants plays a critical role in NHR. RxLR (Arg-any amino acid-Leu-Arg) effectors from two oomycete pathogens, Phytophthora infestans and Hyaloperonospora arabidopsidis, enhanced pathogen infection when expressed in host plants (Nicotiana benthamiana and Arabidopsis, respectively) but the same effectors performed poorly in distantly related nonhost pathosystems. Putative target proteins in the host plant potato were identified for 64 P. infestans RxLR effectors using yeast 2-hybrid (Y2H) screens. Candidate orthologues of these target proteins in the distantly related non-host plant Arabidopsis were identified and screened using matrix Y2H for interaction with RxLR effectors from both P. infestans and H. arabidopsidis. Few P. infestans effector-target protein interactions were conserved from potato to candidate Arabidopsis target orthologues (cAtOrths). However, there was an enrichment of H. arabidopsidis RxLR effectors interacting with cAtOrths. We expressed the cAtOrth AtPUB33, which unlike its potato orthologue did not interact with P. infestans effector PiSFI3, in potato and Nicotiana benthamiana. Expression of AtPUB33 significantly reduced P. infestans colonization in both host plants. Our results provide evidence that failure of pathogen effectors to interact with and/or correctly manipulate target proteins in distantly related non-host plants contributes to NHR. Moreover, exploiting this breakdown in effector-nonhost target interaction, transferring effector target orthologues from non-host to host plants is a strategy to reduce disease.


Assuntos
Arabidopsis , Resistência à Doença , Especificidade de Hospedeiro , Nicotiana , Doenças das Plantas , Proteínas de Plantas , Arabidopsis/metabolismo , Arabidopsis/parasitologia , Oomicetos/metabolismo , Phytophthora infestans/metabolismo , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/metabolismo , Solanum tuberosum/parasitologia , Nicotiana/metabolismo , Nicotiana/parasitologia , Técnicas do Sistema de Duplo-Híbrido
3.
Plant J ; 115(2): 398-413, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37021636

RESUMO

The potato's most devastating disease is late blight, which is caused by Phytophthora infestans. Whereas various resistance (R) genes are known, most are typically defeated by this fast-evolving oomycete pathogen. However, the broad-spectrum and durable R8 is a vital gene resource for potato resistance breeding. To support an educated deployment of R8, we embarked on a study on the corresponding avirulence gene Avr8. We overexpressed Avr8 by transient and stable transformation, and found that Avr8 promotes colonization of P. infestans in Nicotiana benthamiana and potato, respectively. A yeast-two-hybrid (Y2H) screen showed that AVR8 interacts with a desumoylating isopeptidase (StDeSI2) of potato. We overexpressed DeSI2 and found that DeSI2 positively regulates resistance to P. infestans, while silencing StDeSI2 downregulated the expression of a set of defense-related genes. By using a specific proteasome inhibitor, we found that AVR8 destabilized StDeSI2 through the 26S proteasome and attenuated early PTI responses. Altogether, these results indicate that AVR8 manipulates desumoylation, which is a new strategy that adds to the plethora of mechanisms that Phytophthora exploits to modulate host immunity, and StDeSI2 provides a new target for durable resistance breeding against P. infestans in potato.


Assuntos
Phytophthora infestans , Solanum tuberosum , Melhoramento Vegetal , Imunidade Vegetal , Solanum tuberosum/genética , Doenças das Plantas
4.
BMC Genomics ; 25(1): 158, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331736

RESUMO

BACKGROUND: Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS: In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS: This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.


Assuntos
Herpesvirus Bovino 1 , MicroRNAs , Animais , Bovinos , MicroRNAs/genética , MicroRNAs/metabolismo , Herpesvirus Bovino 1/genética , Células Epiteliais/metabolismo , Rim/metabolismo , Redes Reguladoras de Genes , RNA Mensageiro/genética , Perfilação da Expressão Gênica
5.
Am J Epidemiol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38872336

RESUMO

Non-optimal ambient temperatures are risk factors for myocardial infarction (MI) and urban-rural temperature differences in the context of climate change may have caused and will lead to differential association between temperature and MI. We collected daily mean temperature and daily MI deaths from 1 January 2016 to 31 December 2020 in Anhui Province, China. A distributed lag nonlinear model was performed to estimate the area-specific association of heat and cold (defined as the 2.5th and 97.5th percentile of the daily mean temperature) with MI mortality; the random-effects meta-analysis was then used to pool the effects of cold and heat. We found the risk of MI death due to cold was higher in rural areas [relative risk (RR): 1.13, 95% confidence interval (CI): 1.02-1.26, lag0) than in urban areas (RR: 0.99, 95% CI: 0.80-1.21, lag0), whereas the risk of MI death associated with heat was higher in urban areas (RR: 1.14, 95% CI: 1.03-1.27, lag0) than in rural areas (RR: 1.04, 95% CI: 0.99-1.10, lag0). Our findings may help to develop targeted protective strategies to reduce the adverse effects of cold and heat on cardiovascular disease.

6.
J Antimicrob Chemother ; 79(5): 1142-1152, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38551451

RESUMO

OBJECTIVES: To assess the profiles and determinants of drug resistance in HIV-1-infected individuals undergoing ART in Guangxi. METHODS: Samples and data were collected from HIV-1-infected individuals experiencing virological failure post-ART from 14 cities in Guangxi. Sequencing of the HIV-1 pol gene was conducted, followed by analysis for drug resistance mutations using the Stanford University HIV Drug Resistance Database. Logistic regression was employed to identify potential risk factors associated with both HIV drug resistance and mortality. RESULTS: A total of 8963 individuals with pol sequences were included in this study. The overall prevalence of HIV-1 drug resistance (HIVDR) was 42.43% (3808/8963), showing a decrease from 59.62% to 41.40% from 2016 to 2023. Factors such as being aged ≥50 years, male, Han nationality, lower education levels, occupations including workers, peasants and children, AIDS, pre-treatment CD4 T cell counts <200 cells/mm3, infection with CRF01_AE and CRF55_01B subtypes, and ART regimen lamivudine/zidovudine/nevirapine were associated with higher susceptibility to HIVDR. The common mutations were M184V (17.38%) and K103N (22.14%). Additionally, the prevalence of M184V, S68G, M41L and G190A were different between the Han and Zhuang populations. Factors including age, gender, ethnicity, education level, occupation, infectious route, clinical stage, viral load, subtype, ART regimen and HIVDR showed significant associations with mortality. CONCLUSIONS: The factors contributing to drug resistance in the HIV-1 ART individuals in Guangxi appear to be notably intricate. Continuous reinforcement of drug resistance surveillance is imperative, accompanied by the optimization of ART regimens to mitigate virological failures effectively.


Assuntos
Fármacos Anti-HIV , Farmacorresistência Viral , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Infecções por HIV/epidemiologia , HIV-1/genética , HIV-1/efeitos dos fármacos , China/epidemiologia , Masculino , Farmacorresistência Viral/genética , Feminino , Pessoa de Meia-Idade , Adulto , Fármacos Anti-HIV/uso terapêutico , Fármacos Anti-HIV/farmacologia , Fatores de Risco , Adulto Jovem , Prevalência , Mutação , Idoso , Genótipo , Adolescente , Produtos do Gene pol do Vírus da Imunodeficiência Humana/genética , Terapia Antirretroviral de Alta Atividade , Carga Viral/efeitos dos fármacos , Criança
7.
Chemistry ; 30(13): e202400007, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38258423

RESUMO

Modern nanodrug delivery technologies offer new approaches in the fight against cancer. However, due to the heterogeneity of tumors and side effects of anticancer drugs, monotherapies are less effective. Herein, we report a novel pH and light dual-responsive nanodrug delivery platform. The platform was formed by sulfonate-modified gold nanoparticles loaded with the anticancer drugs doxorubicin (DOX) and glucose oxidase (GOx) and then covered by water-soluble pillar[5]arene as a nanovalve. The nanovalve formed by the host-guest interaction between pillar[5]arene and the sulfonic acid group grafted onto the gold nanoparticle increased the drug loading capacity of the nanoplatform and enabled sustained release of the drug in a simulated weakly acidic tumor environment. The released GOx can consume intracellular glucose, namely, starvation therapy, while the generated hydrogen peroxide can further kill tumor cells, complementing DOX chemotherapy. Gold nanoparticles have good photothermal conversion ability and can enhance the drugs release rate under specific wavelengths of light irradiation. The results of in vitro and in vivo experiments showed that this novel nanodrug delivery platform has good biocompatibility and better therapeutic efficacy relative to monotherapy. This study successfully developed a combined chemo/starvation therapy strategy with good tumor suppression, providing a new approach for cancer treatment.


Assuntos
Antineoplásicos , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Ouro , Fototerapia , Sistemas de Liberação de Medicamentos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Liberação Controlada de Fármacos , Linhagem Celular Tumoral
8.
Exp Eye Res ; 241: 109829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354943

RESUMO

The mechanism of myopia and the associated retinopathy remains unclear, and dysregulated microRNAs (miRNAs) are implicated in this disease. In this research, we purposed to find out the regulatory function that miRNAs play in myopia and the associated retinopathy. We first performed miRNA microarray analysis in a lens-induced myopia mouse model and found that miR-9-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-181a-5p were elevated in the myopic retina. Then, we examined the functions and regulatory mechanisms of miR-181a-5p utilizing the human retinal pigment epithelium (RPE) cell line ARPE-19 by overexpressing miR-181a-5p. RNA sequencing (RNA-Seq) and qRT-PCR analysis were employed to identify differentially expressed genes after transfection. The qRT‒PCR outcomes, immunoblotting, and immunofluorescence indicated that the SGSH expression was significantly hindered through miR-181a-5p overexpression. MiR-181a-5p overexpression has the ability to elevate RPE cell proliferation and induce autophagy by targeting SGSH. We validated the negative influence of miR-181a-5p on the SGSH expression through luciferase reporter assays, which demonstrated its ability to target the 3' untranslated region of SGSH. The reversal of implications of miR-181a-5p overexpression was achieved through SGSH upregulation. We provided novel perspectives into the miR-181a-5p function in regulating myopia development and may serve as a target for therapy and molecular biomarker for myopia.


Assuntos
MicroRNAs , Doenças Retinianas , Camundongos , Animais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima , Proliferação de Células , Autofagia/genética
9.
Ann Hematol ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38267560

RESUMO

For patients with acute myeloid leukemia (AML) who are not candidates for allogeneic stem cell transplantation (SCT) or do not have a human leukocyte antigen (HLA)-matched donor, it is unclear whether autologous SCT (ASCT) has a better prognosis after the first complete response (CR1) compared to further chemotherapy treatment. A meta-analysis evaluating ASCT compared to further chemotherapy for AML patients in CR1 was performed. The Medline, Embase, Cochrane Controlled Trials Registry, Cochrane Library, Web of Science, and National Knowledge Infrastructure of China databases were searched for relevant literature as of May 26, 2023. Eligible studies included prospectively enrolled adults with AML and randomized first-time respondent patients who did not have a matched sibling donor. Fourteen randomized controlled trials were identified and included 4281 participants, of which 1499 patients received ASCT and 2782 underwent chemotherapy and continued follow-up. In patients with AML in CR1, a lower relapse rate was associated with ASCT compared to chemotherapy [odds ratio (OR) = 0.49, 95% confidence interval (CI) = 0.41-0.57]. Significant disease-free survival (DFS; OR = 1.37, 95% CI = 1.02-1.84) and relapse-free survival (RFS; OR = 2.78, 95% CI = 1.28-6.02) ASCT benefits were documented, and there was no difference in the overall survival (OS) when the studies were pooled (OR = 1.12, 95% CI = 0.85-1.48). The study results indicated that after the first remission, AML patients receiving autologous stem cell transplantation had higher DFS and RFS, similar OS, and lower relapse compared to patients undergoing chemotherapy treatment. This indicated that autologous stem cell transplantation may have a better prognosis.

10.
Mol Cell Biochem ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512536

RESUMO

In recent years, nonalcoholic fatty liver disease (NAFLD) has become a more serious public health issue worldwide. This study strived to investigate the molecular mechanism of pathogenesis of NAFLD and explore promising diagnostic and therapeutic targets for NAFLD. Raw data from GSE130970 were downloaded from the Gene Expression Omnibus database. We used the dataset to analyze the expression levels of cuproptosis-related genes in NAFLD patients and healthy controls to identify the differentially expressed cuproptosis-related genes (DECRGs). The relationship and potential mechanism between DECRGs and clinicopathological factors were examined by enrichment analysis and two consensus clustering methods. We screened key DECRGs based on Random Forest (RF), and then verified the key DECRGs in NAFLD patients, high-fat diet (HFD)-fed mice, and palmitic acid-induced AML12 cells. ROC analysis showed good diagnostic function of DECRGs in normal and NAFLD liver tissue. Two consensus clusters indicated the important role of cuproptosis in the development of NAFLD. We screened for key DECRGs (DLD, DLAT) based on RF and found a close relationship between the DECRGs and clinicopathological factors. We collected clinical blood samples to verify the differences in gene expression levels by qPCR. In addition, we further verified the expression levels of DLD and DLAT in HFD mice and AML12 cells, which showed the same results. This study provides a novel perspective on the pathogenesis of NAFLD. We identified two cuproptosis-related genes that are closely related to NAFLD. These genes may play a significant role in the molecular pathogenesis of NAFLD, which may be useful to make progress in the diagnosis and treatment of NAFLD.

11.
Surg Endosc ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914885

RESUMO

BACKGROUND: Endoscopic balloon dilation (EBD) is a safe and effective treatment for Crohn's disease (CD)-associated strictures. However, serial EBDs have rarely been reported. This study aimed to evaluate the efficacy and safety of serial EBDs for treating CD-associated duodenal strictures compared with intermittent EBDs. METHODS: Patients with CD-associated duodenal strictures who underwent EBD were recruited. The clinical data, stricture characteristics, number of EBDs, dilation diameter, complications, surgical interventions, and follow-up periods were recorded. Patients were divided into a serial dilation group and an intermittent dilation group to analyze the differences in safety and efficacy. RESULTS: Forty-five patients with duodenal CD-associated strictures underwent a total of 139 dilations. A total of 23 patients in the serial dilation group underwent 72 dilations, for a median of 3 (range 3 ~ 4) dilations per patient, and 22 patients in the intermittent dilation group underwent 67 dilations, for a median of 3 (range 1 ~ 6) dilations per patient. Technical success was achieved in 97.84% (136/139) of the patients. During the follow-up period, three patients in the intermittent dilation group underwent surgery, and the total clinical efficacy was 93.33% (42/45). No difference in safety or short-term efficacy was noted between the two groups, but serial EBDs exhibited significantly greater clinical efficacy between 6 months and 2 years. No significant difference in recurrence-free survival was observed, but the median longest recurrence-free survival and recurrence-free survival after the last EBD in the serial dilation group were 693 days (range 298 ~ 1381) and 815 days (range 502 ~ 1235), respectively, which were significantly longer than the 415 days (range 35 ~ 1493) and 291 days (range 34 ~ 1493) in the intermittent dilation group (p = 0.013 and p = 0.000, respectively). At the last follow-up, the mean diameter of the duodenal lumen was 1.17 ± 0.07 cm in the serial dilation group, which was greater than the 1.11 ± 0.10 cm in the intermittent dilation group (p = 0.018). We also found that the Simple Endoscopic Score for Crohn's Disease was associated with an increased risk of surgical intervention (HR 2.377, 95% CI 1.125-5.020; p = 0.023) and recurrence at 6 months after the last EBD (HR 0.698, 95% CI 0.511-0.953; p = 0.024), as assessed by univariate analysis. CONCLUSIONS: Compared to the intermittent EBDs, serial EBDs for duodenal CD-associated strictures exhibit greater clinical efficacy within two years and could delay stricture recurrence. We suggest that serial EBDs can be a novel option for endoscopic treatment of duodenal CD-associated strictures.

12.
Phytopathology ; 114(5): 1050-1056, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38709298

RESUMO

Auxin is an important phytohormone that regulates diverse biologic processes, including plant growth and immunity. Indole-3-acetic acid (IAA), known as one of the main forms of auxin, is able to activate plant immunity. However, it is unknown whether IAA enhances plant resistance and/or suppresses the growth of the fungal pathogen Magnaporthe oryzae. Here, we found that IAA could induce expression levels of pathogenesis-related genes to enhance disease resistance and could control the development of blast disease through inhibiting M. oryzae infection. Exogenous IAA suppressed mycelial growth and delayed spore germination by inhibiting fungal endogenous IAA biosynthesis and impairing redox homeostasis, respectively. When applied to a field test, two IAA analogues, 1-naphthaleneacetic acid and 2,4-dichlorophenoxy acetic acid, can effectively control rice blast disease. Our study advances the understanding of IAA in controlling rice blast disease through suppressing pathogen growth and enhancing plant resistance.


Assuntos
Resistência à Doença , Ácidos Indolacéticos , Oryza , Doenças das Plantas , Ácidos Indolacéticos/metabolismo , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Resistência à Doença/genética , Resistência à Doença/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ascomicetos/efeitos dos fármacos , Ascomicetos/fisiologia , Ácidos Naftalenoacéticos/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/crescimento & desenvolvimento
13.
J Nanobiotechnology ; 22(1): 9, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169389

RESUMO

Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.


Assuntos
Nefropatias Diabéticas , Glomerulonefrite , Nefrite Lúpica , Humanos , Glomerulonefrite/tratamento farmacológico , Glomerulonefrite/metabolismo , Rim/metabolismo , Nanotecnologia
14.
Nano Lett ; 23(8): 3401-3411, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37036326

RESUMO

Blood and lymph are two main pathways of tumor metastasis; however, hematogenous metastasis and lymphatic metastasis are difficult to inhibit simultaneously. Ferroptosis provides a new breakthrough for metastasis inhibition, but how to effectively trigger ferroptosis in tumor cells remains a major challenge. Metastatic tumor cells are prone to ferroptosis in blood, while they may be protected from ferroptosis in lymph. In this study, a nanoplatform DA/RSL3 was constructed for the intracellular codelivery of the polyunsaturated arachidonic acid (AA) and the GPX4 inhibitor RSL3, which could not only induce ferroptosis but also alleviate ferroptosis resistance. As a result, DA/RSL3 effectively triggered ferroptosis in tumor cells, thereby impairing the ability of tumor cells to metastasize in both blood and lymph. Furthermore, a fucoidan blocking strategy was proposed to maximize the efficacy of DA/RSL3. Fu+DA/RSL3 showed excellent efficacy in 4T1 tumor-bearing mice. This ferroptosis nanotherapy is promising for metastatic cancer treatment.


Assuntos
Ferroptose , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/farmacologia , Metástase Linfática
15.
Plant Foods Hum Nutr ; 79(2): 308-315, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639852

RESUMO

In food industry, the characteristics of food substrate could be improved through its bidirectional solid-state fermentation (BSF) by fungi, because the functional components were produced during BSF. Six edible fungi were selected for BSF to study their effects on highland barley properties, such as functional components, antioxidant activity, and texture characteristics. After BSF, the triterpenes content in Ganoderma lucidum and Ganoderma leucocontextum samples increased by 76.57 and 205.98%, respectively, and the flavonoids content increased by 62.40% (Phellinus igniarius). Protein content in all tests increased significantly, with a maximal increase of 406.11% (P. igniarius). Proportion of indispensable amino acids increased significantly, with the maximum increase of 28.22%. Lysine content increased largest by 437.34% to 3.310 mg/g (Flammulina velutipes). For antioxidant activity, ABTS radical scavenging activity showed the maximal improvement, with an increase of 1268.95%. Low-field NMR results indicated a changed water status of highland barley after fermentation, which could result in changes in texture characteristics of highland barley. Texture analysis showed that the hardness and chewiness of the fermented product decreased markedly especially in Ganoderma lucidum sample with a decrease of 77.96% and 58.60%, respectively. The decrease indicated a significant improvement in the taste of highland barley. The results showed that BSF is an effective technology to increase the quality of highland barley and provide a new direction for the production of functional foods.


Assuntos
Antioxidantes , Fermentação , Ganoderma , Hordeum , Hordeum/química , Antioxidantes/análise , Antioxidantes/metabolismo , Ganoderma/química , Ganoderma/metabolismo , Flavonoides/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Flammulina/química , Flammulina/metabolismo , Reishi/metabolismo , Reishi/química , Manipulação de Alimentos/métodos
16.
Clin Immunol ; 257: 109838, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37935312

RESUMO

The role of m6A in ankylosing spondylitis (AS) remains largely obscure. In this study, we found that m6A modification was decreased in T cells of AS, and the abnormal m6A modification was attributed to the downregulation of methyltransferase-like 14 (METTL14). METTL14 exerted a critical role in regulating autophagy activity and inflammation via targeting Forkhead box O3a (FOXO3a). Mechanistically, the loss of METTL14 decreased the expression of FOXO3a, leading to the damage of autophagic flux and the aggravation of inflammation. Inversely, the forced expression of METTL14 upregulated the expression of FOXO3a, thereby activating autophagy and alleviating inflammation. Furthermore, our results revealed that METTL14 targeted FOXO3a mRNA and regulated its expression and stability in a m6A-dependent manner. These findings uncovered the functional importance of m6A methylation mechanisms in the regulation of autophagy and inflammation, which expanded our understanding of this interaction and was critical for the development of therapeutic strategies for AS.


Assuntos
Adenina , Autofagia , Proteína Forkhead Box O3 , Inflamação , Metiltransferases , Espondilite Anquilosante , Humanos , Adenina/metabolismo , Autofagia/genética , Inflamação/genética , Metiltransferases/genética , Espondilite Anquilosante/genética , Espondilite Anquilosante/patologia , Proteína Forkhead Box O3/metabolismo
17.
FASEB J ; 36(10): e22517, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36036527

RESUMO

Diabetic kidney disease (DKD) is well-acknowledged as one of the most common complications in diabetes mellitus. Recent studies have demonstrated the promising role of mesenchymal stem cell-derived exosomes (MSC-exos) as a cell-free treatment strategy for DKD. The present study sought to investigate the therapeutic potential and the underlying mechanisms of MSC-exos in DKD. The authentication of MSC-exos was validated by western blot, transmission electron microscope (TEM), and nanosight tracking analysis (NTA). Apoptosis was detected by western blot, TUNEL staining, and flow cytometry. Epithelial-to-mesenchymal transition (EMT) was evaluated by western blot and immunofluorescence. The relationship between miR-424-5p and Yes-associated protein 1 (YAP1) was revealed by dual luciferase reporter assay. We observed that MSC-exos could attenuate DKD by decreasing cell apoptosis and inhibiting epithelial-to-mesenchymal transition (EMT) in diabetic kidneys in db/db mice. Besides, we documented that MSC-exos could reverse high glucose-induced apoptosis and EMT in HK2 cells. Interestingly, miR-424-5p derived from MSC-exos could inhibit YAP1 activation in HK2 cells, resulting in alleviation of high glucose-induced cell apoptosis and EMT. Our study provides novel insights into MSC-exos-mediated protective effect in DKD. MSC-exos could inhibit high glucose-induced apoptosis and EMT through miR-424-5p targeting of YAP1.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Animais , Apoptose , Glucose , Camundongos
18.
FASEB J ; 36(5): e22266, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357035

RESUMO

Type 2 diabetes mellitus (T2DM) is an age-related disease characterized by impaired pancreatic ß cell function and insulin resistance. Recent studies have shown that the accumulation of senescent ß cells under metabolic stress conditions leads to the progression of T2DM, while senolysis can improve the prognosis. However, the specific mechanism of ß cell senescence is still unclear. In this study, we found that the increased load of senescence pancreatic ß cells in both older mice and obese mice induced by high-fat diet (HFD) (DIO mice) was accompanied by activation of the Cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) pathway and using cGAS or STING small interfering RNA or STING inhibitor C176 to downregulate this pathway reduced the senescence-associated secretion profile (SASP) and senescence of Min6 cells treated with palmitic acid or hydrogen peroxide. C176 intervention in DIO mice also significantly reduced the inflammation and senescence of the islets, thereby protecting the function of pancreatic ß cell and glucose metabolism. Our study further revealed that mitochondrial DNA (mtDNA) leakage under metabolic stress conditions was critical for the activation of the cGAS-STING pathway, which can be reversed by the mtDNA depleting agent ethidium bromide. Consistently, mtDNA leakage was more severe in older mice and was accelerated by a chronic HFD. In conclusion, we demonstrate that cytoplasmic mtDNA activates the cGAS-STING pathway to mediate SASP during the accelerated senescence of pancreatic ß-cells induced by metabolic stress, and this process can be downregulated by the STING inhibitor C176.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais , Estresse Fisiológico
19.
Lipids Health Dis ; 22(1): 202, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001459

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is frequently linked to type 2 diabetes mellitus (T2DM), and both conditions exacerbate the progression of the other. However, there is currently no standardized treatment or drug for MAFLD. In this study, A MAFLD animal model through a high-fat diet (HFD) along with administration of streptozotocin (STZ), and palmitic acid (PA)-induced AML12 cells were treated by puerarin. The objective of this study was to assess the therapeutic effect of puerarin, a flavonoid substance that possesses various pharmacological properties, on MAFLD. The results showed that puerarin administration enhanced glucose tolerance and insulin sensitivity, while also mitigating liver dysfunction and hyperlipidemia in MAFLD mice. Moreover, puerarin attenuated oxidative stress levels and inflammation in the liver. Transmission electron microscopy and Western blot analysis indicated that puerarin inhibited ferroptosis in vivo. Further mechanistic investigations revealed that puerarin upregulated SIRT1 expression, increased nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels, and facilitated translocation into the nucleus. The protective effect of puerarin on PA-induced AML12 cells was diminished by the utilization of EX-527 (a SIRT1 inhibitor) and Nrf2 siRNA. Overall, the results demonstrate that puerarin ameliorates MAFLD by suppressing ferroptosis and inflammation via the SIRT1/Nrf2 signaling pathway. The results emphasize the possible medicinal application of puerarin for managing MAFLD.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Sirtuína 1/genética , Sirtuína 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Fígado/metabolismo , Inflamação/tratamento farmacológico
20.
Clin Exp Dermatol ; 48(8): 903-908, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37191210

RESUMO

BACKGROUND: Merkel cell carcinoma (MCC) is a highly aggressive neuroendocrine cutaneous carcinoma aetiologically linked to the Merkel cell polyomavirus (MCPyV). Immune checkpoint inhibitors are currently the first-line therapy for metastatic MCC; however, the treatment is effective in only about half of patients, highlighting the need for alternative therapies. Selinexor (KPT-330) is a selective inhibitor of nuclear exportin 1 (XPO1) and has been shown to inhibit MCC cell growth in vitro, but the pathogenesis has not been established. Decades of research have established that cancer cells significantly upregulate lipogenesis to meet an increased demand for fatty acids and cholesterol. Treatments that inhibit lipogenic pathways may halt cancer cell proliferation. AIM: To determine the effect of increasing doses of selinexor on fatty acid and cholesterol synthesis in MCPyV-positive MCC (MCCP) cell lines and aid in elucidating the mechanism by which selinexor prevents and reduces MCC growth. METHODS: MKL-1 and MS-1 cell lines were treated with increasing doses of selinexor for 72 h. Protein expression quantification was determined using chemiluminescent Western immunoblotting and densitometric analysis. Fatty acids and cholesterol were quantified using free fatty acid assay and cholesterol ester detection kits. RESULTS: Selinexor causes statistically significant reductions of the lipogenic transcription factors sterol regulatory element-binding proteins 1 and 2, and lipogenic enzymes acetyl-CoA carboxylase, fatty acid synthase, squalene synthase and 3ß-hydroxysterol Δ-24-reductase in a dose-dependent manner in two MCCP cell lines. Although inhibiting the fatty acid synthesis pathway results in meaningful decreases in fatty acids, the cellular cholesterol levels did not demonstrate such reductions. CONCLUSION: For patients with metastatic MCC refractory to immune checkpoint inhibitors, selinexor may provide clinical benefit through the inhibition of the lipogenesis pathway; however, further research and clinical trials are needed to evaluate these findings.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Humanos , Carcinoma de Célula de Merkel/patologia , Inibidores de Checkpoint Imunológico , Lipogênese , Linhagem Celular , Neoplasias Cutâneas/patologia , Ácidos Graxos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA