Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Breed ; 44(4): 29, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38549701

RESUMO

The chloroplast serves as the primary site of photosynthesis, and its development plays a crucial role in regulating plant growth and morphogenesis. The Pentatricopeptide Repeat Sequence (PPR) proteins constitute a vast protein family that function in the post-transcriptional modification of RNA within plant organelles. In this study, we characterized mutant of rice with pale green leaves (pgl3a). The chlorophyll content of pgl3a at the seedling stage was significantly reduced compared to the wild type (WT). Transmission electron microscopy (TEM) and quantitative PCR analysis revealed that pgl3a exhibited aberrant chloroplast development compared to the wild type (WT), accompanied by significant alterations in gene expression levels associated with chloroplast development and photosynthesis. The Mutmap analysis revealed that a single base deletionin the coding region of Os03g0136700 in pgl3a. By employing CRISPR/Cas9 mediated gene editing, two homozygous cr-pgl3a mutants were generated and exhibited a similar phenotype to pgl3a, thereby confirming that Os03g0136700 was responsible for pgl3a. Consequently, it was designated as OsPGL3A. OsPGL3A belongs to the DYW-type PPR protein family and is localized in chloroplasts. Furthermore, we demonstrated that the RNA editing efficiency of rps8-182 and rpoC2-4106, and the splicing efficiency of ycf3-1 were significantly decreased in pgl3a mutants compared to WT. Collectively, these results indicate that OsPGL3A plays a crucial role in chloroplast development by regulating the editing and splicing of chloroplast genes in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01468-7.

2.
J Biomed Sci ; 21: 51, 2014 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-24885898

RESUMO

BACKGROUND: Excessive manganese exposure induced cognitive deficit. Several lines of evidence have demonstrated that taurine improves cognitive impairment induced by numerous neurotoxins. However, the role of taurine on manganese-induced damages in learning and memory is still elusive. This goal of this study was to investigate the beneficial effect of taurine on learning and memory capacity impairment by manganese exposure in an animal model. RESULTS: The escape latency in the Morris Water Maze test was significantly longer in the rats injected with manganese than that in the rats received both taurine and manganese. Similarly, the probe trial showed that the annulus crossings were significantly greater in the taurine plus manganese treated rats than those in the manganese-treated rats. However, the blood level of manganese was not altered by the taurine treatment. Interestingly, the exposure of manganese led to a significant increase in the acetylcholinesterase activity and an evidently decrease in the choline acetyltransferase activity, which were partially restored by the addition of taurine. Additionally, we identified 9 differentially expressed proteins between the rat hippocampus treated by manganese and the control or the manganese plus taurine in the proteomic analysis using the 2-dimensional gel electrophoresis followed by the tandem mass spectrometry (MS/MS). Most of these proteins play a role in energy metabolism, oxidative stress, inflammation, and neuron synapse. CONCLUSIONS: In summary, taurine restores the activity of AChE and ChAT, which are critical for the regulation of acetylcholine. We have identified seven differentially expressed proteins specifically induced by manganese and two proteins induced by taurine from the rat hippocampus. Our results support that taurine improves the impaired learning and memory ability caused by excessive exposure of manganese.


Assuntos
Acetilcolinesterase/biossíntese , Colina O-Acetiltransferase/biossíntese , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Taurina/administração & dosagem , Acetilcolina/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipocampo/metabolismo , Humanos , Manganês/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Espectrometria de Massas em Tandem
3.
Brain Res Bull ; 140: 107-113, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29678775

RESUMO

Glutamate excitotoxicity, characterized as excessive glutamate stress, is considered to be involved in cerebral ischaemia, brain trauma, and neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Glutamate homeostasis disruption was highlighted in Mn neurotoxicity caused by high levels of Mn. Astrocytes, accounting for approximately 50% of the neuronal cells in the central nervous system and maintain glutamate homeostasis, are sensitive to neurotoxicity induced by Mn exposure. Astrocytes are tightly coupled with gap junctions (GJ), which are comprised of connexins, mainly connexin43 (Cx43). The gap junctional intercellular communication (GJIC) pathway allows small signal molecules, such as glutamate, ATP (adenosine triphosphate, ATP) and tropic factors, etc., to transfer between adjacent cells. Evidence has shown that astrocytes execute the bystander effect during cell death through the GJIC pathway. However, the pathogenic mechanism of the gap junction underlying glutamate neurotoxicity induced by manganese exposure has not been elucidated yet. In the present study, primary astrocytes were cultured and then exposed to different levels of Mn (ranging from 0 to 1000 µM) for 4/16 h to investigate the function of the GJIC in apoptosis induced by Mn. The cellular toxicity was confirmed by cell viability and apoptotic percentage through MTT assay and flow cytometry (FC). The levels of intracellular/extracellular glutamate were measured by high-performance liquid chromatography (HPLC). The fluorescent dye, Lucifer Yellow (LY), was used to assess the status of gap junctions among astrocytes after Mn exposure. The protein/gene expression of major gap junctional forming protein, Cx43, was also investigated. Cell viability was distinctly reduced when exposed to 500 and 1000 µM MnCl2 compared with control cells at both time points. The percentage of apoptosis was significantly increased among all detected Mn levels (125, 500 and 1000 µM MnCl2) of exposure (p < 0.05) with a concentration-dependent manner at either time point. Mn administration for 4/16 h also caused a remarkable intracellular/extracellular glutamate increase in a concentration-dependent manner for extracellular glutamate levels (p < 0.01). Gap junctions were prominently inhibited by Mn with Cx43 protein shown as shortening of the LY dye transfer distance at both time points. In-cell western blot indicated that Mn caused a decrease in Cx43 protein/gene expression in a dose-dependent manner. These results suggested that the gap junction intercellular communication and its forming protein, Cx43, are likely involved in glutamate excitotoxicity induced by Mn exposure.


Assuntos
Astrócitos/efeitos dos fármacos , Cloretos/toxicidade , Conexina 43/metabolismo , Junções Comunicantes/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Junções Comunicantes/metabolismo , Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Compostos de Manganês , Cultura Primária de Células , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley
4.
J Mol Biol ; 320(1): 39-53, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12079333

RESUMO

We present the results of in vitro DNA-binding assays for a mutant protein (Q44K) of the E. coli methionine repressor, MetJ, as well as the crystal structure at 2.2 A resolution of the apo-mutant bound to a 10-mer oligonucleotide encompassing an 8 bp met-box sequence. The wild-type protein binds natural operators co-operatively with respect to protein concentration forming at least a dimer of repressor dimers along operator DNAs. The minimum operator length is thus 16 bp, each MetJ dimer interacting with a single met-box site. In contrast, the Q44K mutant protein can also bind stably as a single dimer to 8 bp target sites, in part due to additional contacts made to the phosphodiester backbone outside the 8 bp target via the K44 side-chains. Protein-protein co-operativity in the mutant is reduced relative to the wild-type allowing the properties of an intermediate on the pathway to operator site saturation to be examined for the first time. The crystal structure of the decamer complex shows a unique conformation for the protein bound to the single met-box site, possibly explaining the reduced protein-protein co-operativity. In both the extended and minimal DNA complexes formed, the mutant protein makes slightly different contacts to the edges of DNA base-pairs than the wild-type, even though the site of amino acid substitution is distal from the DNA-binding motif. Quantitative binding assays suggest that this is not due to artefacts caused by the crystallisation conditions but is most likely due to the relatively small contribution of such direct contacts to the overall binding energy of DNA-protein complex formation, which is dominated by sequence-dependent distortions of the DNA duplex and by the protein-protein contact between dimers.


Assuntos
Proteínas de Bactérias/química , Escherichia coli/metabolismo , Regiões Operadoras Genéticas , Proteínas Repressoras/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Cristalografia por Raios X , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA