Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Plant Cell ; 35(2): 738-755, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36427253

RESUMO

Fruit length is a key domestication trait that affects crop yield and appearance. Cucumber (Cucumis sativus) fruits vary from 5 to 60 cm in length. Despite the identification of several regulators and multiple quantitative trait loci (QTLs) underlying fruit length, the natural variation, and molecular mechanisms underlying differences in fruit length are poorly understood. Through map-based cloning, we identified a nonsynonymous polymorphism (G to A) in CRABS CLAW (CsCRC) as underlying the major-effect fruit size/shape QTL FS5.2 in cucumber. The short-fruit allele CsCRCA is a rare allele that has only been found in round-fruited semi-wild Xishuangbanna cucumbers. A near-isogenic line (NIL) homozygous for CsCRCA exhibited a 34∼39% reduction in fruit length. Introducing CsCRCG into this NIL rescued the short-fruit phenotype, and knockdown of CsCRCG resulted in shorter fruit and smaller cells. In natural cucumber populations, CsCRCG expression was positively correlated with fruit length. Further, CsCRCG, but not CsCRCA, targets the downstream auxin-responsive protein gene CsARP1 to regulate its expression. Knockout of CsARP1 produced shorter fruit with smaller cells. Hence, our work suggests that CsCRCG positively regulates fruit elongation through transcriptional activation of CsARP1 and thus enhances cell expansion. Using different CsCRC alleles provides a strategy to manipulate fruit length in cucumber breeding.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Mapeamento Cromossômico , Frutas/genética , Locos de Características Quantitativas/genética , Fenótipo
2.
Proc Natl Acad Sci U S A ; 120(34): e2120771120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579137

RESUMO

The binding of tumor necrosis factor-like cytokine 1A (TL1A) to death receptor 3 (DR3) plays an important role in the interaction between dendritic cells (DCs) and T cells and contributes to intestinal inflammation development. However, the mechanism by which DCs expressing TL1A mediate helper T (Th) cell differentiation in the intestinal lamina propria (LP) during the pathogenesis of inflammatory bowel disease remains unclear. In this study, we found that TL1A/DR3 promoted Th1 and Th17 cell differentiation in T-T and DC-T cell interaction-dependent manners. TL1A-deficient CD4+ T cells failed to polarize into Th1/Th17 cells and did not cause colonic inflammation in a T cell transfer colitis model. Notably, TL1A was located in the cytoplasm and nuclei of DCs, positively regulated the DC-specific ICAM-grabbing nonintegrin/RAF1/nuclear factor κB signaling pathway, enhanced the antigen uptake ability of DCs, and promoted TLR4-mediated DC activation, inducing naive CD4+ T cell differentiation into Th1 and Th17 cells. Our work reveals that TL1A plays a regulatory role in inflammatory bowel disease pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Humanos , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/genética , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Inflamação/metabolismo , Fator de Necrose Tumoral alfa
3.
Anal Chem ; 96(6): 2286-2291, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289025

RESUMO

The link between inflammation and the evolution of cancer is well established. Visualizing and tracking both tumor proliferation and the associated inflammatory response within a living organism are vital for dissecting the nexus between these two processes and for crafting precise treatment modalities. We report the creation and synthesis of an advanced NIR chemiluminescence probe that stands out for its exceptional selectivity, extraordinary sensitivity at nanomolar concentrations, swift detection capabilities, and broad application prospects. Crucially, this probe has been successfully utilized to image endogenous ONOO- across different inflammation models, including abdominal inflammation triggered by LPS, subcutaneous inflammatory conditions, and tumors grafted onto mice. These findings highlight the significant promise of chemiluminescence imaging in enhancing our grasp of the intricate interplay between cancer and inflammation and in steering the development of potent, targeted therapeutic strategies.


Assuntos
Inflamação , Neoplasias , Animais , Camundongos , Inflamação/diagnóstico por imagem , Luminescência , Neoplasias/diagnóstico por imagem , Corantes Fluorescentes , Ácido Peroxinitroso
4.
Small ; 20(25): e2309648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38234134

RESUMO

The utility of electrochemical active biofilm in bioelectrochemical systems has received considerable attention for harvesting energy and chemical products. However, the slow electron transfer between biofilms and electrodes hinders the enhancement of performance and still remains challenging. Here, using Fe3O4 /L-Cys nanoparticles as precursors to induce biomineralization, a facile strategy for the construction of an effective electron transfer pathway through biofilm and biological/inorganic interface is proposed, and the underlying mechanisms are elucidated. Taking advantage of an on-chip interdigitated microelectrode array (IDA), the conductive current of biofilm that is related to the electron transfer process within biofilm is characterized, and a 2.10-fold increase in current output is detected. The modification of Fe3O4/L-Cys on the electrode surface facilitates the electron transfer between the biofilm and the electrode, as the bio/inorganic interface electron transfer resistance is only 16% compared to the control. The in-situ biosynthetic Fe-containing nanoparticles (e.g., FeS) enhance the transmembrane EET and the EET within biofilm, and the peak conductivity increases 3.4-fold compared to the control. The in-situ biosynthesis method upregulates the genes involved in energy metabolism and electron transfer from the transcriptome analysis. This study enriches the insights of biosynthetic nanoparticles on electron transfer process, holding promise in bioenergy conversion.


Assuntos
Biofilmes , Transporte de Elétrons , Técnicas Eletroquímicas/métodos , Compostos Ferrosos/química , Eletrodos , Nanopartículas/química , Fontes de Energia Bioelétrica
5.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580930

RESUMO

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Assuntos
Clostridiales , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Obesidade/microbiologia , Bactérias/genética , Fezes/microbiologia , Akkermansia
6.
Semin Dial ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566455

RESUMO

BACKGROUND: This study aimed to investigate the clinical characteristics and prognosis of refractory peritoneal dialysis (PD)-associated peritonitis as well as the risk factors of its occurrence and treatment failure. METHODS: A single-center retrospective cohort study was conducted among 519 patients undergoing PD from January 2007 to October 2021. According to the International Society for Peritoneal Dialysis guidelines, all episodes occurred in our center were divided into two groups: refractory and nonrefractory. Demographic, biochemical, and pathogenic bacteria and treatment outcome data were collected. RESULTS: During the 15-year period, 282 episodes of peritonitis occurred in 166 patients undergoing PD. The refractory rate was 34.0% (96/282). Gram-positive organisms were the leading cause of peritonitis (47.9%); however, gram-negative organisms were predominant in refractory peritonitis (34.4%, p = 0.002). Multiple logistic regression revealed that gram-negative organism-based peritonitis, longer PD duration, and female sex were the significant independent predictors of refractory peritonitis. Among 96 refractory episodes, white blood cell (WBC) count, dialysate WBC on Day 3, and PD duration ≥5 years were the independent risk factors of treatment failure. CONCLUSIONS: Gram-negative organism-based peritonitis, longer PD duration, and female sex were the independent risk factors of refractory peritonitis. Refractory peritonitis with higher WBC count, higher dialysate WBC on Day 3, and PD duration ≥5 years increased treatment failure risk and required immediate PD catheter removal. The timely identification of refractory peritonitis with high risk of treatment failure as well as timely PD catheter removal is important.

7.
Anal Chem ; 95(35): 13191-13200, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37610431

RESUMO

Chemiluminescent probes have become increasingly popular in various research areas including precise tumor imaging and immunofluorescence analysis. Nevertheless, previously developed chemiluminescence probes are mainly limited to studying oxidation reaction-associated biological events. This study presents the first example of bioimaging applicable bicyclic dioxetane chemiluminescent probes with tunable emission wavelengths that range from 525 to 800 nm. These newly developed probes were able to detect the analytes of ß-Gal, H2O2, and superoxide with high specificity and a limit of detection of 77 mU L-1, 96, and 28 nM, respectively. The bioimaging application of the probes was verified in ovarian and liver cancer cells and macrophage cells, allowing the detection of the content of ß-Gal, H2O2, and superoxide inside the cells. The high specificity allowed us to image the xenografted tumor in mice. We expect that our probes will receive extensive applications in recording complex biomolecular events using noninvasive imaging techniques.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Animais , Camundongos , Diagnóstico por Imagem , Linhagem Celular , Xenoenxertos
8.
Small ; 19(8): e2206478, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36504185

RESUMO

Platinum group metal (PGM)-free M-N-C catalysts have exhibited dramatic electrocatalytic performance and are considered the most promising candidate of the Pt catalysts in oxygen reduction reaction (ORR). However, the electrocatalytic performance of the M-N-C catalysts is still limited by their inferior intrinsic activity and finite active site density. Regulating the coordination environment and increasing the pore structure of the catalyst is an effective strategy to enhance the electrocatalytic performance of the M-N-C catalysts. In this work, the coordination environment and pore structure exquisitely regulated Fe-N-C catalyst exhibit excellent ORR activity and durability. With the enhanced intrinsic activity and increased active site density, the optimized Fe-N/S-C catalyst shows impressive ORR activity (E1/2  = 0.904 V vs reversible hydrogen electrode (RHE)) and superior long-term durability in an alkaline medium. As the advanced physical characterization and theoretical chemistry methods illustrate, the S-modified Fe-Nx (Fe-N3 /S-C) moiety is confirmed as the improved active center for ORR, and the increased active site density further improved ORR efficiency. Based on the Fe-N/S-C cathode, a Zn-air battery is fabricated and shows superior power density (315.4 mW cm-2 ) and long-term discharge stability at 20 mA cm-2 . This work would open a new perspective to design atomically dispersed iron-metal site catalysts for advanced electro-catalysis.

9.
Small ; 19(37): e2206477, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37147778

RESUMO

Oxygen electrocatalysis has aroused considerable interest over the past years because of the new energy technologies boom in hydrogen energy and metal-air battery. However, due to the sluggish kinetic of the four-electron transfer process in oxygen reduction reaction and oxygen evolution reaction, the electro-catalysts are urgently needed to accelerate the oxygen electrocatalysis. Benefit from the high atom utilization efficiency, unprecedentedly high catalytic activity, and selectivity, single-atom catalysts (SACs) are considered the most promising candidate to replace the traditional Pt-group-metal catalysts. Compared with SACs, the dual-atom catalysts (DACs) are attracting more attraction including higher metal loading, more versatile active sites, and excellent catalytic activity. Therefore, it is essential to explore the new universal methods approaching to the preparation, characterization, and to elucidate the catalytic mechanisms of the DACs. In this review, several general synthetic strategies and structural characterization methods of DACs are introduced and the involved oxygen catalytic mechanisms are discussed. Moreover, the state-of-the-art electrocatalytic applications including fuel cells, metal-air batteries, and water splitting have been sorted out at present. The authors hope this review has given some insights and inspiration to the researches about DACs in electro-catalysis.

10.
J Transl Med ; 21(1): 68, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732743

RESUMO

BACKGROUND: Intratumoral microbial communities have been recently discovered to exist in a variety of cancers and have been found to be intricately involved in tumour progression. Therefore, investigating the profiles and functions of intratumoral microbial distribution in hepatocellular carcinoma (HCC) is imperative. METHODS: To verify the presence of microorganisms in HCC, we performed fluorescence in situ hybridization (FISH) using HCC tissues and conducted MiSeq using 99 HCC and paracancerous tissues to identify the key microorganisms and changes in metabolic pathways affecting HCC progression through a variety of bioinformatics methods. RESULTS: Microbial diversity was significantly higher in HCC tissues than in adjacent tissues. The abundances of microorganisms such as Enterobacteriaceae, Fusobacterium and Neisseria were significantly increased in HCC tissues, while the abundances of certain antitumour bacteria such as Pseudomonas were decreased. Processes such as fatty acid and lipid synthesis were significantly enhanced in the microbiota in HCC tissues, which may be a key factor through which intratumoral microbes influence tumour progression. There were considerable differences in the microbes and their functions within tumour tissue collected from patients with different clinical features. CONCLUSION: We comprehensively evaluated the intratumoral microbial atlas of HCC tissue and preliminarily explored the mechanism of the effects of the microbial community involving changes in lipid metabolism and effects on HCC progression, which lays the foundation for further research in this field.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Hibridização in Situ Fluorescente , Biologia Computacional
11.
Hepatology ; 76(1): 94-111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34735734

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion (HIR) injury, a common clinical complication of liver transplantation and resection, affects patient prognosis. Ring finger protein 5 (RNF5) is an E3 ubiquitin ligase that plays important roles in endoplasmic reticulum stress, unfolded protein reactions, and inflammatory responses; however, its role in HIR is unclear. APPROACH AND RESULTS: RNF5 expression was significantly down-regulated during HIR in mice and hepatocytes. Subsequently, RNF5 knockdown and overexpression of cell lines were subjected to hypoxia-reoxygenation challenge. Results showed that RNF5 knockdown significantly increased hepatocyte inflammation and apoptosis, whereas RNF5 overexpression had the opposite effect. Furthermore, hepatocyte-specific RNF5 knockout and transgenic mice were established and subjected to HIR, and RNF5 deficiency markedly aggravated liver damage and cell apoptosis and activated hepatic inflammatory responses, whereas hepatic RNF5 transgenic mice had the opposite effect compared with RNF5 knockout mice. Mechanistically, RNF5 interacted with phosphoglycerate mutase family member 5 (PGAM5) and mediated the degradation of PGAM5 through K48-linked ubiquitination, thereby inhibiting the activation of apoptosis-regulating kinase 1 (ASK1) and its downstream c-Jun N-terminal kinase (JNK)/p38. This eventually suppresses the inflammatory response and cell apoptosis in HIR. CONCLUSIONS: We revealed that RNF5 protected against HIR through its interaction with PGAM5 to inhibit the activation of ASK1 and the downstream JNK/p38 signaling cascade. Our findings indicate that the RNF5-PGAM5 axis may be a promising therapeutic target for HIR.


Assuntos
Proteínas de Membrana , Fosfoproteínas Fosfatases , Traumatismo por Reperfusão , Ubiquitina-Proteína Ligases , Animais , Apoptose , Humanos , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fosfoproteínas Fosfatases/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
Cell Commun Signal ; 21(1): 348, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049863

RESUMO

Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.


Assuntos
Neoplasias , Poliaminas , Animais , Humanos , Poliaminas/metabolismo , Poliaminas/farmacologia , Apoptose , RNA , Neoplasias/metabolismo , Proliferação de Células , Mamíferos/metabolismo
13.
Cell Commun Signal ; 21(1): 343, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031146

RESUMO

Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.


Assuntos
Neoplasias , RNA de Interação com Piwi , Humanos , RNA Interferente Pequeno/metabolismo , Proteínas/genética , Epigênese Genética , Neoplasias/genética , Neoplasias/metabolismo
14.
Anal Bioanal Chem ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962608

RESUMO

Human urine phosphorus (existing in the form of phosphate) is a biomarker for the diagnosis of several diseases such as kidney disease, hyperthyroidism, and rickets. Therefore, the selective detection of phosphate in urine samples is crucial in the field of clinical diagnosis. Herein, we reported the phosphatase-like catalytic activity of few-layered h-BNNS for the first time. As the phosphatase-like activity of few-layered h-BNNS could be effectively inhibited by phosphate, a selective fluorescent method for the detection of phosphate was proposed. The linear range for phosphate detection is 0.5-10 µM with a detection limit of 0.33 µM. The fluorescent method was then explored for the detection of human urine phosphorus in real samples. The results obtained by the proposed method were consistent with those of the traditional method, indicating that the present method has potential application for urine phosphorus detection in clinical disease diagnosis.

15.
Acta Pharmacol Sin ; 44(11): 2253-2264, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37311796

RESUMO

Although STAT3 has been reported as a negative regulator of type I interferon (IFN) signaling, the effects of pharmacologically inhibiting STAT3 on innate antiviral immunity are not well known. Capsaicin, approved for the treatment of postherpetic neuralgia and diabetic peripheral nerve pain, is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), with additional recognized potencies in anticancer, anti-inflammatory, and metabolic diseases. We investigated the effects of capsaicin on viral replication and innate antiviral immune response and discovered that capsaicin dose-dependently inhibited the replication of VSV, EMCV, and H1N1. In VSV-infected mice, pretreatment with capsaicin improved the survival rate and suppressed inflammatory responses accompanied by attenuated VSV replication in the liver, lung, and spleen. The inhibition of viral replication by capsaicin was independent of TRPV1 and occurred mainly at postviral entry steps. We further revealed that capsaicin directly bound to STAT3 protein and selectively promoted its lysosomal degradation. As a result, the negative regulation of STAT3 on the type I IFN response was attenuated, and host resistance to viral infection was enhanced. Our results suggest that capsaicin is a promising small-molecule drug candidate, and offer a feasible pharmacological strategy for strengthening host resistance to viral infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Interferon Tipo I , Infecções por Orthomyxoviridae , Camundongos , Animais , Capsaicina/farmacologia , Fator de Transcrição STAT3 , Transdução de Sinais , Proteínas de Transporte , Replicação Viral
16.
Gerontology ; 69(4): 428-449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36470214

RESUMO

INTRODUCTION: Senile osteoporosis is one of the most common age-related diseases worldwide. Glucagon like peptide-2 (GLP-2), a naturally occurring gastrointestinal peptide, possesses therapeutic effects on bone loss in postmenopausal women and ovariectomized rats. However, the role of GLP-2 in senile osteoporosis and underlying mechanisms has not been explored. METHODS: GLP-2 was subcutaneously injected into the 6-month-old male senile osteoporosis model of senescence-accelerated mouse prone 6 (SAMP6) mice for 6 weeks. SAMP6 subjected to normal saline and senescence-accelerated mouse resistant 1 served as control groups. Micro-computed tomography was performed to evaluate the bone mass and microarchitecture of the mice. Osteoblastic and osteoclastic activities were determined by biochemical, quantitative real-time PCR, histological, and histomorphometric analyses combined with hematoxylin-eosin, toluidine blue, and tartrate-resistant acid phosphatase staining. We also examined the proteins and structure of intestinal tight junction using immunohistochemical assay as well as a transmission electron microscope. Serum inflammation marker levels were measured using ELISA. Additionally, anti-oxidative enzymes GPX-4 and SOD-2 and receptors of GLP-2 and vitamin D expression in the ileum and colon were detected under immunofluorescence staining. RESULTS: Six-week GLP-2 treatment attenuated bone loss in SAMP6 mice, as evidenced by increased bone mineral density, improved microarchitecture in femora, and enhanced osteogenic activities. In contrast, the activity of osteoclastic activity was not obviously inhibited. Moreover, GLP-2 ameliorated tight junction structure and protein expression in the intestinal barrier, which was accompanied by the reduction of TNF-α level. The expression of receptors of intestinal GLP-2 and vitamin D in the ileum was elevated. Furthermore, the oxidative stress in the intestines was improved by increasing the GPX-4 and SOD-2 signaling. CONCLUSION: Our findings suggest that GLP-2 could ameliorate age-associated bone loss, tight junction structure, and improved antioxidant enzyme activity in the gut in SAMP6 mice. Amelioration of gut barrier dysfunction may potentially contribute to improving bone formation and provide evidence for targeting the entero-bone axis in the treatment of senile osteoporosis.


Assuntos
Peptídeo 2 Semelhante ao Glucagon , Osteoporose , Camundongos , Masculino , Feminino , Ratos , Animais , Microtomografia por Raio-X/métodos , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Modelos Animais de Doenças , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Osteoporose/patologia , Envelhecimento , Vitamina D , Superóxido Dismutase
17.
Ren Fail ; 45(1): 2177496, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36786676

RESUMO

BACKGROUND: Peritoneal dialysis (PD)-associated peritonitis is a serious complication observed in peritoneal dialysis patients. Herein, we investigated the clinical characteristics and treatment outcomes of PD peritonitis in patients with different PD durations. METHODS: All peritonitis episodes from January 2007 to December 2020 at Peking University People's hospital PD center were retrospectively analyzed and divided into the long-dialysis duration (≥60 months, LDD) and short-dialysis duration (<60 months, SDD) groups. Clinical characteristics and outcomes were compared between these groups. The risk factors for treatment failure were analyzed using a logistic regression model. RESULTS: During 14 years, 156 patients had 267 peritonitis episodes. There were 83 (31.1%) peritonitis episodes in the LDD group and 184 (68.9%) in the SDD group. No statistical difference was noted in peritonitis causes and the composition of causative pathogens between the two groups. The hospitalization, treatment failure, and transfer-to-hemodialysis rates, and peritonitis-related mortality were significantly higher in the LDD group than in the SDD group (all p < .05). Logistic regression analysis revealed that PD duration was an independent risk factor for PD-associated hospitalization, treatment failure and peritonitis-related death (p < .05). The receiver operating characteristic curve analysis results showed that when the cutoff value of PD duration was 5.5 years, the sensitivity of predicting PD peritonitis treatment failure was 51.1%, specificity was 78.8%, and the area under the curve was 0.679 (95% confidence interval: 0.594-0.765, p < .001). CONCLUSIONS: PD duration is an independent risk factor for poor prognosis in PD peritonitis. Careful and active attention should be paid to the prevention of peritonitis in PD patients with long PD duration.


Assuntos
Falência Renal Crônica , Diálise Peritoneal , Peritonite , Humanos , Estudos Retrospectivos , Diálise Renal/efeitos adversos , Diálise Peritoneal/efeitos adversos , Prognóstico , Peritonite/epidemiologia , Peritonite/etiologia , Peritonite/tratamento farmacológico , Fatores de Risco , Falência Renal Crônica/complicações
18.
Sensors (Basel) ; 23(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067880

RESUMO

This paper proposes a flexible eddy current TMR (FEC-TMR) sensor to monitor the internal crack of metal joint structures. First, the finite element model of the FEC-TMR sensor is established to analyze the influence of the sensor's crack identification sensitivity with internal crack propagation at different depths and determine the optimal location and exciting frequency of the sensor. Then, the optimal longitudinal spacing and exciting frequency of the sensor are tested by experiment. The experimental results are consistent with the simulation results, which verify the correctness of the simulation model. Finally, the experiment is carried out for internal cracks of different depths to verify that the sensor can monitor internal cracks, and the crack identification sensitivity gradually decreases with the increase in the depth of the crack from the surface.

19.
Molecules ; 28(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37513215

RESUMO

α-Ketoamide moieties, as privileged units, may represent a valuable option to develop compounds with favorable biological activities, such as low toxicity, promising PK and drug-like properties. An efficient silver-catalyzed decarboxylative acylation of α-oxocarboxylic acids with isocyanides was developed to derivatize the α-ketoamide functional group via a multicomponent reaction (MCR) cascade sequence in one pot. A series of α-ketoamides was synthesized with three components of isocyanides, aromatic α-oxocarboxylic acid analogues and water in moderate yields. Based on the research, the silver-catalyzed decarboxylative acylation confirmed that an oxygen atom of the amide moiety was derived from the water and air as a sole oxidant for the whole process.

20.
J Environ Sci (China) ; 124: 89-97, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182191

RESUMO

In situ and simultaneous remediation of a variety of pollutants in sediments remains a challenge. In this study, we report that the combination of electrocoagulation (EC) and electrooxidation (EO) is efficient in the immobilization of phosphorus and heavy metals and in the oxidation of ammonium and toxic organic matter. The integrated mixed metal oxide (MMO)/Fe anode system allowed the facile removal of ammonium and phosphorus in the overlying water (99% of 10 mg/L NH4+-N and 95% of 10 mg/L P disappeared in 15 and 30 min, respectively). Compared with the controls of the single Fe anode and single MMO anode systems, the dual MMO/Fe anode system significantly improved the removal of phenanthrene and promoted the transition of Pb and Cu from the mobile species to the immobile species. The concentrations of Pb and Cu in the toxicity characteristic leaching procedure extracts were reduced by 99% and 97% after an 8 hr operation. Further tests with four real polluted samples indicated that substantial proportions of acid-soluble fraction Pb and Cu were reduced (30%-31% for Pb and 16%-23% for Cu), and the amounts of total organic carbon and NH4+-N decreased by 56%-71% and 32%-63%, respectively. It was proposed that the in situ electrogenerated Fe(II) at the Fe anode and the active oxygen/chlorine species at the MMO anode are conducive to outstanding performance in the co-treatment of multiple pollutants. The results suggest that the EC/EO method is a powerful technology for the in situ remediation of sediments contaminated with different pollutants.


Assuntos
Compostos de Amônio , Poluentes Ambientais , Metais Pesados , Fenantrenos , Poluentes Químicos da Água , Carbono , Cloro , Eletrocoagulação , Compostos Ferrosos , Sedimentos Geológicos , Chumbo , Metais Pesados/análise , Óxidos , Fósforo , Espécies Reativas de Oxigênio , Água , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA