Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(30): 20680-20685, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37486143

RESUMO

The advent of topological phonons has been attracting tremendous attention. However, studies in two-dimensional (2D) systems are limited. Here, we reveal a 2D novel combination of Weyl phonons - a Weyl complex composed of two linear Weyl nodes and one quadratic Weyl node. This Weyl complex consists of crossing points of two specific branches. We show that the coexistence of threefold symmetry - rotation symmetry, inversion symmetry, and time-reversal symmetry - could lead to the presence of the Weyl complex. Based on the symmetry requirement, we further construct the tight-binding model and effective k·p model for characterizing the Weyl complex. Moreover, due to the presence of the spacetime inversion symmetry, the linear and quadratic Weyl nodes feature a quantized (π and 2π) Berry phase, thus defining the corresponding topological charge. Furthermore, Weyl complexes consisting of Weyl points possess an emergent chiral symmetry, an integer topological charge is thus defined. Then, distinguished phenomena for the Weyl complex are studied, in particular, the edge states with three terminals. Our work predicts the presence of this novel 2D topological phase, and provides the symmetry guidance to realize it. Based on the first-principles calculations, we identify an existing material Cu2Si, as a concrete example to demonstrate the presence of the Weyl complex, and also study the phase transition under symmetry breaking.

2.
Phys Chem Chem Phys ; 25(39): 26566-26574, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37753587

RESUMO

An excellent catalyst generally meets three indicators: high electron mobility, high surface density of states and low Gibbs free energy (ΔG) [H. Luo et al. Nat. Rev. Phys., 2022, 4, 611-624]. Recent studies have confirmed that topological materials exhibit more advantages than conventional precious metals with regard to the above-mentioned indicators. Herein, based on DFT calculations and symmetry analysis, we discovered for the first time that the topological surface states of Mg3Bi2 with a Kagome lattice promote hydrogen evolution reactions (HERs). In particular, there exists a snake-like type-II nodal loop (NL), located on kz = 0 plane in Mg3Bi2. Besides, the NL forms a topologically protected drumhead surface state on the (001) surface. It was found that the ΔG (0.176 eV) value of the (001) surface is comparable to that of the precious metal Pt. Then, through hole doping and strain regulation, it was found that the catalytic activity of Mg3Bi2 is closely related to the drumhead surface state formed by NL. With the above-mentioned results, this study not only provides a promising candidate material for hydrogen electrolysis, but also deepens our understanding of the dominant factors of NL semimetals for the catalytic activity.

3.
J Phys Condens Matter ; 36(16)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38211322

RESUMO

This investigation provides a comprehensive exploration into the intricate interplay between topological surface states (TSS) and catalytic performance in two-dimensional (2D) materials, with specific emphasis on monolayer Cu2Se. Leveraging the unique characteristics of nodal loop semimetals (NLSMs), we delve into the precise influence of TSS on catalytic activity, particularly in the domain of CO2electrochemical reduction. Our findings illuminate the central role played by these TSS, arising from the underlying NLSM framework, in sculpting catalytic efficiency. The length of these surface states emerges as a critical determinant of surface density of states (DOSs), a fundamental factor governing catalytic behavior. Extension of these surface states correlates with heightened surface DOSs, yielding lower Gibbs free energies and consequently enhancing catalytic performance, particularly in the electrochemical reduction of CO2. Moreover, we underscore the profound importance of preserving symmetries that protect the nodal loop. The disruption of these symmetries is found to result in a significant degradation of catalytic efficacy, underscoring the paramount significance of topological features in facilitating catalytic processes. Therefore, this study not only elucidates the fundamental role of TSS in dictating the catalytic performance of topological 2D materials but also paves the way for harnessing these unique attributes to drive sustainable and highly efficient catalysis across a diverse spectrum of chemical processes.

4.
Nanoscale ; 15(34): 14018-14024, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37552024

RESUMO

The investigation of two-dimensional (2D) multiferroic and topological quantum phases is a significant topic in current condensed matter physics. In this study, we discover quantum topological phases in the multiferroic material Tl2NO2. We observe that its ferroelectric (FE) phase displays a ferromagnetic ground state with magnetization favoring in-plane orientation. In the absence of spin-orbit coupling (SOC), a Weyl nodal loop around the Fermi level is evident, representing a 1D band crossing between spin-up and spin-down states. When spin-orbit coupling is taken into account, setting the magnetization in-plane, the Weyl nodal loop becomes gapped. Additionally, a pair of 2D Weyl nodes appear on the high-symmetry path, protected by a vertical mirror symmetry allowed by the magnetization. Remarkably, we prove that the Weyl nodes are situated at the topological phase transition between two quantum anomalous Hall (QAH) phases with opposite Chern numbers. Therefore, by adjusting the magnetization, it is possible to switch the propagation direction of chiral edge states. Furthermore, from its ferroelectric state to a paraelectric state, the time-reversal symmetry breaking nodal line is transformed into a Weyl point, achieving 100% spin polarization. Particularly, the Weyl points remain robust against SOC when the vertical mirror symmetry is preserved. Importantly, we also demonstrate that the Weyl point also represents the transition point where the QAH phase changes the sign of its Chern number. Overall, our study provides new insights into the study of multiferroic and topological phenomena in 2D materials and offers a potential avenue for controlling QAH phases.

5.
Micromachines (Basel) ; 13(7)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35888950

RESUMO

Compared with other physiotherapy devices, epidermal electronic systems (EES) used in medical applications such as hyperthermia have obvious advantages of conformal attachment, lightness and high efficiency. The stretchable flexible electrode is an indispensable component. The structurally designed flexible inorganic stretchable electrode has the advantage of stable electrical properties under tensile deformation and has received enough attention. However, the space between the patterned electrodes introduced to ensure the tensile properties will inevitably lead to the uneven temperature distribution of the thermotherapy electrodes and degrade the effect of thermotherapy. It is of great practical value to study the temperature uniformity of the stretchable patterned electrode. In order to improve the uniformity of temperature distribution in the heat transfer system with stretchable electrodes, a temperature distribution manipulation strategy for orthotropic substrates is proposed in this paper. A theoretical model of the orthotropic heat transfer system based on the horseshoe-shaped mesh electrode is established. Combined with finite element analysis, the effect of the orthotropic substrate on the uniformity of temperature distribution in three types of heat source heat transfer systems is studied based on this model. The influence of the thermal conductivity ratio in different directions on the temperature distribution is studied parametrically, which will help to guide the design and fabrication of the stretchable electrode that can produce a uniform temperature distribution.

6.
Micromachines (Basel) ; 13(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014246

RESUMO

Epidermal electronic systems (EESs) are a representative achievement for utilizing the full advantages of ultra-thin, stretchable and conformal attachment of flexible electronics, and are extremely suitable for integration with human physiological systems, especially in medical hyperthermia. The stretchable heater with stable electrical characteristics and a uniform temperature field is an irreplaceable core component. The inorganic stretchable heater has the advantage of maintaining stable electrical characteristics under tensile deformation. However, the space between the patterned electrodes that provides tensile properties causes uneven distribution of the temperature field. Aiming at improving the temperature distribution uniformity of stretchable thermotherapy electrodes, an orthotropic heat transfer substrate for stretchable heaters is proposed in this paper. An analytical model for transient heat conduction of stretchable rectangular heaters based on orthotropic transfer characteristics is established, which is validated by finite element analysis (FEA). The homogenization effect of orthotropic heat transfer characteristics on temperature distribution and its evolutionary relationship with time are investigated based on this model. This study will provide beneficial help for the temperature distribution homogenization design of stretchable heaters and the exploration of its transient heat transfer mechanism.

7.
Biosensors (Basel) ; 12(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36005016

RESUMO

Skin-inspired flexible wearable acceleration sensors attract much attention due to their advantages of portability, personalized and comfortable experience, and potential application in healthcare monitoring, human-machine interfaces, artificial intelligence, and physical sports performance evaluation. This paper presents a flexible wearable acceleration sensor for monitoring human motion by introducing the island-bridge configuration and serpentine interconnects. Compared with traditional wearable accelerometers, the flexible accelerometer proposed in this paper improves the wearing comfort while reducing the cost of the device. Simulation and experiments under bending, stretching, and torsion conditions demonstrate that the flexible performance of the flexible acceleration sensor can meet the needs of monitoring the daily movement of the human body, and it can work normally under various conditions. The measurement accuracy of the flexible acceleration sensor is verified by comparing it with the data of the commercial acceleration sensor. The flexible acceleration sensor can measure the acceleration and the angular velocity of the human body with six degrees of freedom and recognize the gesture and motion features according to the acceleration characteristics. The presented flexible accelerometers provide great potential in recognizing the motion features that are critical for healthcare monitoring and physical sports performance evaluation.


Assuntos
Dispositivos Eletrônicos Vestíveis , Aceleração , Inteligência Artificial , Humanos , Monitorização Fisiológica , Movimento (Física) , Movimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA