Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37895154

RESUMO

DNA methylation is a pivotal epigenetic regulatory mechanism in the development of skeletal muscles. Nonetheless, the regulators responsible for DNA methylation in the development of embryonic duck skeletal muscles remain unknown. In the present study, whole genome bisulfite sequencing (WGBS) and transcriptome sequencing were conducted on the skeletal muscles of embryonic day 21 (E21) and day 28 (E28) ducks. The DNA methylation pattern was found to fall mainly within the cytosine-guanine (CG) context, with high methylation levels in the intron, exon, and promoter regions. Overall, 7902 differentially methylated regions (DMRs) were identified, which corresponded to 3174 differentially methylated genes (DMGs). By using integrative analysis of both WGBS with transcriptomics, we identified 1072 genes that are DMGs that are negatively associated with differentially expressed genes (DEGs). The gene ontology (GO) analysis revealed significant enrichment in phosphorylation, kinase activity, phosphotransferase activity, alcohol-based receptors, and binding to cytoskeletal proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGGs) analysis showed significant enrichment in MAPK signaling, Wnt signaling, apelin signaling, insulin signaling, and FoxO signaling. The screening of enriched genes showed that hyper-methylation inhibited the expression of Idh3a, Got1, Bcl2, Mylk2, Klf2, Erbin, and Klhl38, and hypo-methylation stimulated the expression of Col22a1, Dnmt3b, Fn1, E2f1, Rprm, and Wfikkn1. Further predictions showed that the CpG islands in the promoters of Klhl38, Klf2, Erbin, Mylk2, and Got1 may play a crucial role in regulating the development of skeletal muscles. This study provides new insights into the epigenetic regulation of the development of duck skeletal muscles.


Assuntos
Metilação de DNA , Epigênese Genética , Animais , Patos/genética , Transcriptoma , Músculo Esquelético/metabolismo
2.
Biochem Genet ; 60(4): 1236-1252, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34837127

RESUMO

Keratinocyte migration is a crucial process during skin wound healing, and circular RNAs are associated with keratinocyte migration. The purpose of our study was to clarify the role of circ_0084443 in wound healing. The levels of circ_0084443, microRNA (miR)-17-3p, and forkhead box protein O4 (FOXO4) were examined by quantitative reverse transcription-PCR. Cell migration was detected via wound scratch assay or transwell assay. The protein expression was measured using western blot. The binding analysis between miR-17-3p and circ_0084443 or FOXO4 was determined by dual-luciferase reporter assay and RNA Immunoprecipitation assay. TGF-ß1 decreased the levels of circ_0084443 and FOXO4 while increased the miR-17-3p expression in keratinocytes by a concentration-dependent manner. Circ_0084443 acted as a miR-17-3p sponge and circ_0084443 overexpression alleviated TGF-ß1-induced migration of keratinocytes by sponging miR-17-3p. FOXO4 was a target for miR-17-3p. The downregulation of miR-17-3p suppressed cell migration in TGF-ß1-induced cells by increasing the FOXO4 level. Circ_0084443 positively regulated the FOXO4 expression by sponging miR-17-3p. Circ_0084443 suppressed the TGFß signaling pathway by affecting the miR-17-3p/FOXO4 axis. These results exhibited that circ_0084443 suppressed the TGF-ß1-induced keratinocyte migration by regulating the miR-17-3p/FOXO4 axis, suggesting the application potential of circ_0084443 in wound-healing-related diseases.


Assuntos
MicroRNAs , Fator de Crescimento Transformador beta1 , Movimento Celular/genética , Proliferação de Células/genética , Queratinócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Cicatrização
3.
Poult Sci ; 103(8): 103899, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38909509

RESUMO

The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models. Comparative studies indicated that factored spectrally transformed linear mixed models (FaST-LMM) demonstrated the most superior efficiency, yielding more results with the minimal false positives. We discovered that PUS7, FBXO11, FOXN2, MSH6, and SLC4A4 were associated with BWB. RAG2, and TMEFF2 were candidate genes for BW1, and STARD13, Klotho, ZAR1L are likely candidates for BW3 and BW5. PLXNC1, ATP1A1, CD58, FRYL, OCIAD1, and OCIAD2 were linked to BW7. These findings provide a genetic reference for the selection and breeding of Jinling White ducks, while also deepened our understanding of Growth and development phenotypic in ducks.

4.
Poult Sci ; 103(7): 103791, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678975

RESUMO

To investigate the effect of genetic selection on meat quality in ducks, twenty of each fast growth ducks (LCA) and slow growth ducks (LCC) selected from F6 generation of Cherry Valley ducks (♂) x Liancheng white ducks (♀) were analyzed for carcass characteristics, meat quality (physicochemical and textural characteristics), amino acid and fatty acid profiles at 7 wk. Results showed that live body weight, slaughter weight, eviscerated yield and abdominal fat percentage of LCA were significantly higher than those in LCC ducks (P < 0.01). Moreover, the average area and diameter of myofiber were larger in LCA than LCC ducks (P < 0.01). The breast and thigh muscles of LCA exhibited significantly lower water holding capacity and thermal loss compared with LCC ducks (P < 0.01). In addition, the content of nonessential amino acids (Glu, Asp, and Arg) in breast muscles and Asp, Ser, Thr, and Met in thigh muscles was higher in LCC than LCA ducks (P < 0.05). The proportion of polyunsaturated fatty acids (PUFA) in breast muscles of LCC was higher than LCA ducks (P < 0.05). However, the content of saturated fatty acids (SFA) in breast and thigh muscles of LCA was higher compared with LCC ducks (P < 0.05). The proportion of monounsaturated fatty acids (MUFA) in thigh muscles was significantly higher in LCC compared with LCA ducks (P < 0.01). Finally, multiple traits were evaluated by applying principal component analysis (PCA) and the results indicated that PUFA and SFA in breast muscles of LCA played important roles in meat quality, followed by Warner-Bratzler shear force (WBSF) and MUFA. However, water holding capacity (WHC) had a dominant effect in meat quality of thigh muscles in both LCA and LCC ducks.


Assuntos
Aminoácidos , Patos , Ácidos Graxos , Carne , Músculo Esquelético , Animais , Patos/fisiologia , Patos/genética , Patos/crescimento & desenvolvimento , Carne/análise , Aminoácidos/metabolismo , Aminoácidos/análise , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Músculo Esquelético/química , Masculino , Feminino , Composição Corporal
5.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575126

RESUMO

Objective: The objective of this study was to identify candidate genes that play im-portant roles in skeletal muscle development in ducks. Methods: In this study, we investigated the transcriptional sequencing of embryonic pectoral muscles from two specialized line LCA and LCC ducks which were devel-oped from Liancheng White ducks (female) and Cherry Valley ducks (male) F6 hybrid population. In addition, prediction of target genes for the differentially expressed mRNAs was conducted and the enriched gene ontology (GO) terms and Kyoto En-cyclopedia of Genes and Genomes (KEGG) signaling pathways were further analyzed. Finally, a protein-to-protein interaction (PPI) network was analyzed by using the tar-get genes to gain insights into their potential functional association. Results: A total of 1428 differentially expressed genes (DEGs) with 762 being up-regulated genes and 666 being down-regulated genes in pectoral muscle of LCA and LCC ducks identified by RNA-seq (p < 0.05). Meanwhile, 23 GO terms in the down-regulated genes and 75 GO terms in up-regulated genes were significantly en-riched (p < 0.05). Furthermore, the top 5 most enriched pathways were ECM-receptor interaction, fatty acid degradation, pyruvate degradation, PPAR signaling pathway, and glycolysis/gluconeogenesis. Finally, the candidate genes including Integrin b3 (Itgb3), Pyruvate kinase M1/2 (Pkm), Insulin-like growth factor 1 (Igf1), glu-cose-6-phosphate isomerase(Gpi), GABA type A receptor-associated protein-like 1(Gabarapl1), and Thyroid hormone receptor beta (Thrb) showed the most expression difference, and then were selected to verification by qRT-PCR. The result of qRT-PCR was consistent with that of transcriptome sequencing. Conclusion: This study provided information of molecular mechanisms underlying the developmental differences in skeletal muscles between specialized duck lines.

6.
Genes (Basel) ; 15(1)2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254942

RESUMO

China boasts a rich diversity of indigenous duck species, some of which exhibit desirable economic traits. Here, we generated transcriptome sequencing datasets of breast muscle tissue samples from 1D of four groups: Pekin duck pure breeding group (P), Jinling White duck breeding group (J), P ♂ × J ♀ orthogonal group (PJ) and J ♂ × P ♀ reciprocal-cross group (JP) (n = 3), chosen based on the distinctive characteristics of duck muscle development during the embryonic period. We identified 5053 differentially expressed genes (DEGs) among the four groups. Network prediction analysis showed that ribosome and oxidative phosphorylation-related genes were the most enriched, and muscular protein-related genes were found in the 14-day-old embryonic group. We found that previously characterized functional genes, such as FN1, AGRN, ADNAMST3, APOB and FGF9, were potentially involved in muscle development in 14-day-old embryos. Functional enrichment analysis suggested that genes that participated in molecular function and cell component and key signaling pathways (e.g., hippo, ribosome, oxidative phosphorylation) were significantly enriched in the development of skeletal muscle at 14 days of embryonic age. These results indicate a possible role of muscle metabolism and myoglobin synthesis in skeletal muscle development in both duck parents and hybrids.


Assuntos
Patos , Perfilação da Expressão Gênica , Animais , Patos/genética , Expressão Gênica , Desenvolvimento Muscular/genética , Músculo Esquelético
7.
Yi Chuan ; 30(1): 87-93, 2008 Jan.
Artigo em Zh | MEDLINE | ID: mdl-18244908

RESUMO

A mispairing PCR-RFLP technique was applied in this study to determine the Insulin-like Growth Factor 2(IGF2) gene intron3 G3072A mutation in an outbred Landrace and Large White, and the gelded boars from Landrace x Large White cross. The difference of corresponding traits and the genetic effects of the boars inherited from parental A allele and inherited from parental G allele were analyzed. The results indicated that comparing with the boars inherited from parental G allele, the boars inherited from parental A allele increased significantly in the circumference 3.06% (P< 0.05) and index of body 3.01% (P< 0.05), respectively. The boars inherited from parental A allele had a significantly less average buttock fat thickness (15.31%, P< 0.01), thorax-waist fat thickness (23.74%, P< 0.01), skin thickness 9.38% (P< 0.01), fiber density (20.03%, P< 0.01) and had more less 6th-7th rib fat thickness (20.27%, P< 0.05), tendernce (17.32%, P< 0.05), and had more thick shoulder fat thickness (7.97%, P< 0.05), and had bigger the loin eye area (22.58%, P< 0.01) and fiber cross-sectional area (32.70%, P< 0.01) and fiber diameter (15.38%, P< 0.01) and lean meat (2.18%, P< 0.01) than the boars inherited from parental G allele. The results were suggested that the parental A allele has highly significant genetic effects in improving pig body development and carcass lean percent by increasing fiber diameter and the loin eye area, and decreasing the skin thickness and fat percent.


Assuntos
Íntrons/genética , Mutação , Somatomedinas/genética , Suínos/anatomia & histologia , Suínos/genética , Alelos , Animais , Tamanho Corporal/genética , Feminino , Genótipo , Masculino , Carne , Músculos/metabolismo , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Suínos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA