RESUMO
Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.
Assuntos
Distonia , Epilepsia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genéticaRESUMO
Histamine (HA) acts as a neurotransmitter in the brain, which participates in the regulation of many biological processes including inflammation, gastric acid secretion and neuromodulation. The enzyme histamine N-methyltransferase (HNMT) inactivates HA by transferring a methyl group from S-adenosyl-l-methionine to HA, and is the only well-known pathway for termination of neurotransmission actions of HA in mammalian central nervous system. We performed autozygosity mapping followed by targeted exome sequencing and identified two homozygous HNMT alterations, p.Gly60Asp and p.Leu208Pro, in patients affected with nonsyndromic autosomal recessive intellectual disability from two unrelated consanguineous families of Turkish and Kurdish ancestry, respectively. We verified the complete absence of a functional HNMT in patients using in vitro toxicology assay. Using mutant and wild-type DNA constructs as well as in silico protein modeling, we confirmed that p.Gly60Asp disrupts the enzymatic activity of the protein, and that p.Leu208Pro results in reduced protein stability, resulting in decreased HA inactivation. Our results highlight the importance of inclusion of HNMT for genetic testing of individuals presenting with intellectual disability.
Assuntos
Genes Recessivos , Histamina N-Metiltransferase/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Sequência de Aminoácidos , Domínio Catalítico , Criança , Pré-Escolar , Simulação por Computador , Análise Mutacional de DNA , Exoma , Feminino , Histamina N-Metiltransferase/metabolismo , Humanos , Lactente , Deficiência Intelectual/enzimologia , Iraque , Masculino , Dados de Sequência Molecular , Linhagem , Alinhamento de Sequência , Turquia , População Branca/genéticaRESUMO
Understanding the underlying causes of congenital anomalies (CAs) can be a complex diagnostic journey. We aimed to assess the efficiency of exome sequencing (ES) and chromosomal microarray analysis (CMA) in patients with CAs among a population with a high fraction of consanguineous marriage. Depending on the patient's symptoms and family history, karyotype/Quantitative Fluorescence- Polymerase Chain Reaction (QF-PCR) (n = 84), CMA (n = 81), ES (n = 79) or combined CMA and ES (n = 24) were performed on 168 probands (66 prenatal and 102 postnatal) with CAs. Twelve (14.28%) probands were diagnosed by karyotype/QF-PCR and seven (8.64%) others were diagnosed by CMA. ES findings were conclusive in 39 (49.36%) families, and 61.90% of them were novel variants. Also, 64.28% of these variants were identified in genes that follow recessive inheritance in CAs. The diagnostic rate (DR) of ES was significantly higher than that of CMA in children from consanguineous families (P = 0·0001). The highest DR by CMA was obtained in the non-consanguineous postnatal subgroup and by ES in the consanguineous prenatal subgroup. In a population that is highly consanguineous, our results suggest that ES may have a higher diagnostic yield than CMA and should be considered as the first-tier test in the evaluation of patients with congenital anomalies.
Assuntos
Anormalidades Congênitas , Consanguinidade , Testes Genéticos , Humanos , Irã (Geográfico) , Feminino , Masculino , Testes Genéticos/métodos , Testes Genéticos/normas , Anormalidades Congênitas/genética , Anormalidades Congênitas/diagnóstico , Sequenciamento do Exoma , Criança , Pré-Escolar , Lactente , Recém-Nascido , Diagnóstico Pré-Natal/métodosRESUMO
Osteoporosis-pseudoglioma syndrome (OPPG) is a rare autosomal recessive disorder characterized by severe osteoporosis and eye abnormalities that lead to vision loss. In this study, clinical findings and genetic study of two siblings with OPPG are presented. Whole exome sequencing of DNA enriched for exonic regions was performed with SureSelect 38Mbp all exon kit v. 7.0. The two siblings presented with different clinical manifestations of OPPG. The younger female sibling had blindness and severe osteoporosis with multiple fractures, while her older brother was also blind but with less severe osteoporosis and no fractures. On analysis, a novel homozygous nonsense mutation (c.351G>A) in exon 2 of LRP5 (NM_002335) was found, predicted to change a tryptophan at 117 to a stop codon (p. Trp117Ter). Thus, a variable phenotype was associated with an identical variant in these two siblings. The novel mutation reported herein expands the spectrum of the underlying genetic pathology of OPPG.
Assuntos
Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteoporose , Feminino , Humanos , Masculino , Códon sem Sentido , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Osteoporose/genética , IrmãosRESUMO
AIM: To investigate the association of youth metabolic syndrome (MetS) and its components, individually and in combination with early adulthood incident type 2 diabetes (T2DM). METHODS: A total of 2798 adolescents aged 11-19 years enrolled in the study. At baseline, MetS, its components including blood pressure (BP), waist circumference (WC), triglycerides (TGs), fasting plasma glucose, and low HDL-C, and different combinations of MetS components were defined. After a mean 11.3 years of follow-up, T2DM was determined. Multivariable Cox proportional hazard regression analysis adjusted for age, sex, family history of T2DM, and adult BMI was used for data analysis. The hazard ratio (HR) and 95% confidence interval (CI) were reported. RESULTS: During the follow-up, 44 incidents T2DM were developed. Among different individual components, only high WC [HR = 2.63, 95% CI (1.39-4.97)] and high TGs [HR = 1.82, 95% CI (1.00-3.34)] remained as significant predictors only in the age and sex adjusted model. Regarding combinations of MetS components, 'high TGs and high WC' [HR = 2.70, 95% CI (1.27-5.77)], 'high BP and high WC' [HR = 2.52, 95% CI (1.00-6.33)], 'high TGs and high BP' [HR = 2.27, 95% CI (1.02-5.05)] as well as MetS per se [HR = 2.82, 95% CI (1.41-5.64)] had a significant relationship with incident T2DM in the multivariable adjusted model. Among different confounders, being female and having family history of T2DM were consistently associated with higher risk of T2DM, in different combinations of MetS components. CONCLUSIONS: Adolescence MetS and some combinations of MetS components predicted early adulthood T2DM. Thus, adolescents, particularly female ones, with combinations of MetS components as well as those with family history of T2DM could be targeted for lifestyle intervention.
RESUMO
H syndrome is a rare monogenic autosomal recessive disease with characteristic cutaneous findings and multisystem involvement. The aim of this study is to present an Iranian patient with H syndrome and to describe a novel frameshift mutation in SLC29A3 gene. The patient was diagnosed with a few small areas of hyperpigmentation and accompanying hypertrichosis in the lumbar area of her back. Her clinical phenotypes included short stature, hepatosplenomegaly, facial widespread bilateral telangiectatic lesions, bilateral hypertrophy of the parotid gland, upper extremity flexion contracture, elevated inflammatory markers (ESR, CRP) and diabetes mellitus. The identification of a novel homozygous frameshift mutation (c.307_308delTT, p.F103Ter) in SLC29A3 gene, together with the characteristic clinical manifestations of H syndrome, provided accurate diagnosis for this patient.
Assuntos
Anormalidades Múltiplas/genética , Mutação da Fase de Leitura , Hiperpigmentação/genética , Hipertricose/genética , Proteínas de Transporte de Nucleosídeos/genética , Anormalidades Múltiplas/patologia , Pré-Escolar , Feminino , Homozigoto , Humanos , Hiperpigmentação/complicações , Hiperpigmentação/patologia , Hipertricose/complicações , Hipertricose/patologia , Irã (Geográfico) , Mastocitose Cutânea/complicações , Mastocitose Cutânea/genética , Mastocitose Cutânea/patologia , SíndromeRESUMO
Replicative immortality is a hallmark of cancer cells governed by telomere maintenance. Approximately 90% of human cancers maintain their telomeres by activating telomerase, driven by the transcriptional upregulation of telomerase reverse transcriptase (TERT). Although TERT promoter mutations (TPMs) are a major cancer-associated genetic mechanism of TERT upregulation, many cancers exhibit TERT upregulation without TPMs. In this study, we describe the TERT hypermethylated oncological region (THOR), a 433-bp genomic region encompassing 52 CpG sites located immediately upstream of the TERT core promoter, as a cancer-associated epigenetic mechanism of TERT upregulation. Unmethylated THOR repressed TERT promoter activity regardless of TPM status, and hypermethylation of THOR counteracted this repressive function. THOR methylation analysis in 1,352 human tumors revealed frequent (>45%) cancer-associated DNA hypermethylation in 9 of 11 (82%) tumor types screened. Additionally, THOR hypermethylation, either independently or along with TPMs, accounted for how approximately 90% of human cancers can aberrantly activate telomerase. Thus, we propose that THOR hypermethylation is a prevalent telomerase-activating mechanism in cancer that can act independently of or in conjunction with TPMs, further supporting the utility of THOR hypermethylation as a prognostic biomarker.
Assuntos
Metilação de DNA , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , Regiões Promotoras Genéticas , Telomerase/biossíntese , Linhagem Celular Tumoral , Ilhas de CpG , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Humanos , Proteínas de Neoplasias/genética , Telomerase/genéticaRESUMO
The identification of new biomarkers to differentiate between indolent and aggressive prostate tumors is an important unmet need. We examined the role of THOR (TERT Hypermethylated Oncological Region) as a diagnostic and prognostic biomarker in prostate cancer (PCa).We analyzed THOR in common cancers using genome-wide methylation arrays. Methylation status of the whole TERT gene in benign and malignant prostate samples was determined by MeDIP-Seq. The prognostic role of THOR in PCa was assessed by pyrosequencing on discovery and validation cohorts from patients who underwent radical prostatectomy with long-term follow-up data.Most cancers (n = 3056) including PCa (n = 300) exhibited hypermethylation of THOR. THOR was the only region within the TERT gene that is differentially methylated between normal and malignant prostate tissue (p < 0.0001). Also, THOR was significantly hypermethylated in PCa when compared to paired benign tissues (n = 164, p < 0.0001). THOR hypermethylation correlated with Gleason scores and was associated with tumor invasiveness (p = 0.0147). Five years biochemical progression free survival (BPFS) for PCa patients in the discovery cohort was 87% (95% CI 73-100) and 65% (95% CI 52-78) for THOR non-hypermethylated and hypermethylated cancers respectively (p = 0.01). Similar differences in BPFS were noted in the validation cohort (p = 0.03). Importantly, THOR was able to predict outcome in the challenging (Gleason 6 and 7 (3 + 4)) PCa (p = 0.007). For this group, THOR was an independent risk factor for BPFS with a hazard-ratio of 3.685 (p = 0.0247). Finally, THOR hypermethylation more than doubled the risk of recurrence across all PSA levels (OR 2.5, p = 0.02).
Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Telomerase/genética , Idoso , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Metilação de DNA , Epigênese Genética , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Prognóstico , Modelos de Riscos Proporcionais , Prostatectomia , Neoplasias da Próstata/cirurgia , Estudos RetrospectivosRESUMO
DNA replication-associated mutations are repaired by two components: polymerase proofreading and mismatch repair. The mutation consequences of disruption to both repair components in humans are not well studied. We sequenced cancer genomes from children with inherited biallelic mismatch repair deficiency (bMMRD). High-grade bMMRD brain tumors exhibited massive numbers of substitution mutations (>250/Mb), which was greater than all childhood and most cancers (>7,000 analyzed). All ultra-hypermutated bMMRD cancers acquired early somatic driver mutations in DNA polymerase É or δ. The ensuing mutation signatures and numbers are unique and diagnostic of childhood germ-line bMMRD (P < 10(-13)). Sequential tumor biopsy analysis revealed that bMMRD/polymerase-mutant cancers rapidly amass an excess of simultaneous mutations (â¼600 mutations/cell division), reaching but not exceeding â¼20,000 exonic mutations in <6 months. This implies a threshold compatible with cancer-cell survival. We suggest a new mechanism of cancer progression in which mutations develop in a rapid burst after ablation of replication repair.
Assuntos
Pareamento Incorreto de Bases , Neoplasias Encefálicas/genética , Reparo de Erro de Pareamento de DNA , Replicação do DNA/genética , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Éxons , Mutação em Linhagem Germinativa , Humanos , Instabilidade de MicrossatélitesRESUMO
BACKGROUND: Caveolin is a multifunctional and scaffolding membrane protein, which involves cholesterol trafficking to plasma lipid microdomain. It organizes and targets synaptic parts of the neurotransmitter and neurotrophic receptor signaling pathways. Caveolins are encoded by CAV-1, 2 and 3 genes. Disruption of the CAV1 would likely ruin the neuronal signaling, which leads to symptoms of schizophrenia in predisposed individuals. OBJECTIVES: The upper area of CAV-1 gene is highly conserved and can have a regulatory role in neurodegenerative diseases. This study was designed to find out the possible association of polymorphisms of this area and schizophrenia. PATIENTS AND METHODS: In a case-control study, 254 blood samples were obtained from 127 patients with schizophrenia and 127 well matched controls referred to 22 Bahman Hospital of Qazvin University of Medical Sciences (QUMS) in Qazvin province, Iran, using simple random sampling method. After extracting DNA, the upper region of the human CAV1- gene was amplified by PCR in all collected samples. The products were visualized by silver staining in 10% polyacrylamide gel and then sequenced. RESULTS: We detected nine homozygotes in patients and 15 in control subjects. Homozygosity was 7.08% and 11.8% in cases and control, respectively. Nine types homozygote haplotype were detected in upper region of the CAV1 gene in cases and controls. Three haplotypes were common in cases and controls; four haplotypes were seen in controls only and two in cases. CONCLUSIONS: Our findings implied a significant correlation between some haplotypes of upper region of CAV1 gene and schizophrenia. Existence of some haplotypes and lack of another in CAV1 upstream can suggest a significant correlation between schizophrenia and some haplotypes.
RESUMO
The alpha-synuclein-caveolin 1 axis is suggested to be of role in the pathogenesis of Parkinson's disease in cell line models. The objective of this study was to analyze the homozygous haplotype compartment of the human caveolin 1 gene upstream purine complex in patients afflicted with Parkinson's disease. This complex was screened in patients with Parkinson's disease (n = 141) and compared with a group of controls (n = 760) using polymerase chain reaction and sequencing. The expression activity of the homozygous haplotypes was then examined using luciferase Dual-Glo system in human neuronal cell line, LAN-5. Six haplotypes were found to be homozygous in the patients, and not in the control pool (Fisher exact p < 1 × 10(-6)). Three of those haplotypes were specific to Parkinson's disease (Fisher exact p < 0.002), and the remaining three overlapped with homozygous haplotypes in Alzheimer's disease and multiple sclerosis (Fisher exact p < 0.002). The disease haplotypes contained motif lengths that were nonexistent in the control homozygous haplotype pool and significantly increased gene expression (p < 9 × 10(-6)). We conclude that skew in the caveolin 1 purine complex homozygous haplotype compartment and an additive effect of those haplotypes may be linked with Parkinson's disease.
Assuntos
Caveolina 1/genética , Haplótipos , Homozigoto , Doença de Parkinson/genética , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Purinas/química , Sequências Reguladoras de Ácido Nucleico/genéticaRESUMO
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by multiple regions of demyelination and inflammation along axons with a T cell-mediated autoimmune etiology. While the cytotoxic T lymphocyte antigen 4 (CTLA-4) gene seems to be a strong candidate gene in autoimmune diseases, we investigated its association with a group of patients with MS. One hundred and thirty five patients with relapsing-remitting form of MS and 135 healthy subjects were enrolled in this study. Three single nucleotide polymorphisms (SNPs) (-318C/T, +49A/G, +6230A/G) of the CTLA-4 gene were assessed using PCR-RFLP method. The genotypes -318 CC (82.9% in patients vs. 76.2% in controls) and +49 AA (31.1% in patients vs. 28.1% in controls) were overrepresented in the patient group; however, these differences were not statistically significant. In spite of some previous reports, this study did not confirm any significant association with alleles and genotypes of SNPs of the CTLA4 in Iranian MS patients. Such disparity could be due to genetic background, ethnicity and different forms of the disease.