Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Drug Metab Dispos ; 51(10): 1391-1402, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37524541

RESUMO

Numerous biomedical applications have been described for liver-humanized mouse models, such as in drug metabolism or drug-drug interaction (DDI) studies. However, the strong enlargement of the bile acid (BA) pool due to lack of recognition of murine intestine-derived fibroblast growth factor-15 by human hepatocytes and a resulting upregulation in the rate-controlling enzyme for BA synthesis, cytochrome P450 (CYP) 7A1, may pose a challenge in interpreting the results obtained from such mice. To address this challenge, the human fibroblast growth factor-19 (FGF19) gene was inserted into the Fah-/- , Rag2-/- , Il2rg-/- NOD (FRGN) mouse model, allowing repopulation with human hepatocytes capable of responding to FGF19. While a decrease in CYP7A1 expression in human hepatocytes from humanized FRGN19 mice (huFRGN19) and a concomitant reduction in BA production was previously shown, a detailed analysis of the BA pool in these animals has not been elucidated. Furthermore, there are sparse data on the use of this model to assess potential clinical DDI. In the present work, the change in BA composition in huFRGN19 compared with huFRGN control animals was systematically evaluated, and the ability of the model to recapitulate a clinically described CYP3A4-mediated DDI was assessed. In addition to a massive reduction in the total amount of BA, FGF19 expression in huFRGN19 mice resulted in significant changes in the profile of various primary, secondary, and sulfated BAs in serum and feces. Moreover, as observed clinically, administration of the pregnane X receptor agonist rifampicin reduced the oral exposure of the CYP3A4 substrate triazolam. SIGNIFICANCE STATEMENT: Transgenic expression of FGF19 normalizes the unphysiologically high level of bile acids in a chimeric liver-humanized mouse model and leads to massive changes in bile acid composition. These adaptations could overcome one of the potential impediments in the use of these mouse models for drug-drug interaction studies.


Assuntos
Ácidos e Sais Biliares , Citocromo P-450 CYP3A , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Camundongos Endogâmicos NOD , Fígado/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/metabolismo , Interações Medicamentosas
2.
Biopharm Drug Dispos ; 41(1-2): 72-88, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31925778

RESUMO

Oxycodone is an opioid analgesic with several pharmacologically active metabolites and relatively narrow therapeutic index. Cytochrome P450 (CYP) 3A4 and CYP2D6 play major roles in the metabolism of oxycodone and its metabolites. Thus, inhibition and induction of these enzymes may result in substantial changes in the exposure of both oxycodone and its metabolites. In this study, a physiologically based pharmacokinetic (PBPK) model was built using GastroPlus™ software for oxycodone, two primary metabolites (noroxycodone, oxymorphone) and one secondary metabolite (noroxymorphone). The model was built based on literature and in house in vitro and in silico data. The model was refined and verified against literature clinical data after oxycodone administration in the absence of drug-drug interactions (DDI). The model was further challenged with simulations of oxycodone DDI with CYP3A4 inhibitors ketoconazole and itraconazole, CYP3A4 inducer rifampicin and CYP2D6 inhibitor quinidine. The magnitude of DDI (AUC ratio) was predicted within 1.5-fold error for oxycodone, within 1.8-fold and 1.3-4.5-fold error for the primary metabolites noroxycodone and oxymorphone, respectively, and within 1.4-4.5-fold error for the secondary metabolite noroxymorphone, when compared to the mean observed AUC ratios. This work demonstrated the capability of PBPK model to simulate DDI of the administered compounds and the formed metabolites of both DDI victim and perpetrator. However, the predictions for the formed metabolites tend to be associated with higher uncertainty than the predictions for the administered compound. The oxycodone model provides a tool for forecasting oxycodone DDI with other CYP3A4 and CYP2D6 DDI perpetrators that may be co-administered with oxycodone.


Assuntos
Modelos Biológicos , Oxicodona/farmacocinética , Simulação por Computador , Inibidores do Citocromo P-450 CYP3A/farmacocinética , Sistema Enzimático do Citocromo P-450 , Interações Medicamentosas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Oxicodona/administração & dosagem , Software
3.
Planta Med ; 85(6): 453-464, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30736072

RESUMO

Scoparone, a major constituent of the Chinese herbal medicine Yin Chen Hao, expresses beneficial effects in experimental models of various diseases. The intrinsic doses and effects of scoparone are dependent on its metabolism, both in humans and animals. We evaluated in detail the metabolism of scoparone in human, mouse, rat, pig, dog, and rabbit liver microsomes in vitro and in humans in vivo. Oxidation of scoparone to isoscopoletin via 6-O-demethylation was the major metabolic pathway in liver microsomes from humans, mouse, rat, pig and dog, whereas 7-O-demethylation to scopoletin was the main reaction in rabbit. The scoparone oxidation rates in liver microsomes were 0.8 - 1.2 µmol/(min*g protein) in mouse, pig, and rabbit, 0.2 - 0.4 µmol/(min*g protein) in man and dog, and less than 0.1 µmol/(min*g) in rat. In liver microsomes of all species, isoscopoletin was oxidized to 3-[4-methoxy-ρ-(3, 6)-benzoquinone]-2-propenoate and esculetin, which was formed also in the oxidation of scopoletin. Human CYP2A13 exhibited the highest rate of isoscopoletin and scopoletin oxidation, followed by CYP1A1 and CYP1A2. Glucuronidation of isoscopoletin and scopoletin was catalyzed by the human UGT1A1, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, and UGT2B17. Dog was most similar to man in scoparone metabolism. Isoscopoletin glucuronide and sulfate conjugates were the major scoparone in vivo metabolites in humans, and they were completely excreted within 24 h in urine. Scoparone and its metabolites did not activate key nuclear receptors regulating CYP and UGT enzymes. These results outline comprehensively the metabolic pathways of scoparone in man and key preclinical animal species.


Assuntos
Cumarínicos/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Animais , Cumarínicos/farmacocinética , Cães , Medicamentos de Ervas Chinesas/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Microssomos Hepáticos/metabolismo , Oxirredução , Coelhos , Ratos , Ratos Wistar , Suínos
4.
Mol Pharm ; 13(4): 1358-65, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26950248

RESUMO

Nanomedicines are widely studied for intracellular delivery of cancer drugs. However, the relationship between intracellular drug concentrations and drug responses are poorly understood. In this study, cellular and nuclear concentrations of doxorubicin were quantified with LC/MS after cell exposure with free and liposomal doxorubicin (pH-sensitive and pegylated liposomes). Cellular uptake of pegylated liposomes was low (∼3-fold extracellular concentrations) compared with doxorubicin in free form and pH-sensitive liposomes (up to 280-fold extracellular concentrations) in rat glioma (BT4C) and renal clear cell carcinoma (Caki-2) cells. However, after the cell exposure with pegylated liposomes, intracellular doxorubicin was distributed into the nuclear compartment in both cell types. Despite high drug concentrations in the nuclei, Caki-2 cells showed strong resistance toward doxorubicin. A model was successfully built to describe PK/PD relationship between drug concentrations in nucleus and cytotoxic responses in BT4C cells. This model is the first step to link target site concentration of doxorubicin into its effect and can be a useful part of more comprehensive future in vivo PK/PD models.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos
5.
Pharm Res ; 32(1): 74-90, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25033762

RESUMO

PURPOSE: Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine. METHODS: Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry. RESULTS: Seven and two CYPs were present in the liver and intestine, respectively. CYP3A12 was the most abundant CYP in both tissues. Seven UGT enzymes were quantified in the liver and seven in the intestine although UGT1A11 and UGT1A9 were present only in the intestine and UGT1A7 and UGT2B31 were found only in the liver. UGT1A11 and UGT1A2 were the most abundant UGTs in the intestine and UGT2B31 was the most abundant UGT in the liver. Summed abundance of UGT enzymes was similar to the sum of CYP enzymes in the liver whereas intestinal UGTs were up to four times more abundant than CYPs. The estimated coefficients of variation of abundance estimates in the livers of 14 donors were separated into biological and technical components which ranged from 14 to 49% and 20 to 39%, respectively. CONCLUSIONS: Abundances of canine CYP enzymes in liver and intestine have been confirmed in a larger number of dogs and UGT abundances have been quantified for the first time. The biological variability in hepatic CYPs and UGTs has also been estimated.


Assuntos
Colo/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Intestino Delgado/enzimologia , Fígado/enzimologia , Proteômica/métodos , Animais , Sistema Enzimático do Citocromo P-450/análise , Cães , Feminino , Glucuronosiltransferase/análise , Humanos , Masculino , Espectrometria de Massas , Microssomos/enzimologia , Modelos Biológicos , Especificidade da Espécie
6.
Mol Pharm ; 10(4): 1388-99, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23438212

RESUMO

The beagle dog is a widely used in vivo model to guide clinical formulation development and to explore the potential for food effects. However, the results in dogs are often not directly translatable to humans. Consequently, a physiologically based modeling strategy has been proposed, using the dog as a validation step to verify model assumptions before making predictions in humans. One current weakness in this strategy is the lack of validated tools to incorporate gut wall metabolism into the dog model. In this study, in vitro to in vivo extrapolation factors for CYP2B11 and CYP3A12 mediated metabolism were established based on tissue enzyme abundance data reported earlier. Thereafter, physiologically based modeling of intestinal absorption in beagle dog was conducted in GastroPlus using V(max) and K(m) determined in recombinant enzymes as inputs for metabolic turnover. The predicted fraction of absorbed dose escaping the gut wall metabolism (F(g)) of all five reference compounds studied (domperidone, felodipine, nitrendipine, quinidine, and sildenafil) were within a two-fold range of the value estimated from in vivo data at single dose levels. However, further in vivo studies and analysis of the dose-dependent pharmacokinetics of felodipine and nitrendipine showed that more work is required for robust forecasting of nonlinearities. In conclusion, this study demonstrates an approach for prediction of the gut wall extraction of CYP substrates in the beagle dog, thus enhancing the value of dog studies as a component in a strategy for the prediction of human pharmacokinetics.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Intestinos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Células CACO-2 , Citocromo P-450 CYP2B1/química , Sistema Enzimático do Citocromo P-450/química , Cães , Domperidona/farmacocinética , Felodipino/farmacocinética , Humanos , Técnicas In Vitro , Cinética , Nitrendipino/farmacocinética , Permeabilidade , Piperazinas/farmacocinética , Purinas/farmacocinética , Quinidina/farmacocinética , Citrato de Sildenafila , Sulfonas/farmacocinética , Distribuição Tecidual
7.
Pharm Res ; 29(7): 1832-42, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22354837

RESUMO

PURPOSE: Physiologically based models, when verified in pre-clinical species, optimally predict human pharmacokinetics. However, modeling of intestinal metabolism has been a gap. To establish in vitro/in vivo scaling factors for metabolism, the expression and activity of CYP enzymes were characterized in the intestine and liver of beagle dog. METHODS: Microsomal protein abundance in dog tissues was determined using testosterone-6ß-hydroxylation and 7-hydroxycoumarin-glucuronidation as markers for microsomal protein recovery. Expressions of 7 CYP enzymes were estimated based on quantification of proteotypic tryptic peptides using multiple reaction monitoring mass spectrometry. CYP3A12 and CYP2B11 activity was evaluated using selective marker reactions. RESULTS: The geometric mean of total microsomal protein was 51 mg/g in liver and 13 mg/cm in intestine, without significant differences between intestinal segments. CYP3A12, followed by CYP2B11, were the most abundant CYP enzymes in intestine. Abundance and activity were higher in liver than intestine and declined from small intestine to colon. CONCLUSIONS: CYP expression in dog liver and intestine was characterized, providing a basis for in vitro/in vivo scaling of intestinal and hepatic metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450/análise , Intestinos/enzimologia , Fígado/enzimologia , Microssomos/enzimologia , Sequência de Aminoácidos , Animais , Hidrocarboneto de Aril Hidroxilases/análise , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , Cães , Intestinos/química , Fígado/química , Espectrometria de Massas , Microssomos/química , Dados de Sequência Molecular , Esteroide Hidroxilases/análise , Esteroide Hidroxilases/metabolismo
8.
Pharmaceutics ; 13(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34575401

RESUMO

Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are expressed in the small intestines, but prediction of first-pass extraction from the related metabolism is not well studied. This work assesses physiologically based pharmacokinetic (PBPK) modeling as a tool for predicting intestinal metabolism due to UGTs in the human gastrointestinal tract. Available data for intestinal UGT expression levels and in vitro approaches that can be used to predict intestinal metabolism of UGT substrates are reviewed. Human PBPK models for UGT substrates with varying extents of UGT-mediated intestinal metabolism (lorazepam, oxazepam, naloxone, zidovudine, cabotegravir, raltegravir, and dolutegravir) have demonstrated utility for predicting the extent of intestinal metabolism. Drug-drug interactions (DDIs) of UGT1A1 substrates dolutegravir and raltegravir with UGT1A1 inhibitor atazanavir have been simulated, and the role of intestinal metabolism in these clinical DDIs examined. Utility of an in silico tool for predicting substrate specificity for UGTs is discussed. Improved in vitro tools to study metabolism for UGT compounds, such as coculture models for low clearance compounds and better understanding of optimal conditions for in vitro studies, may provide an opportunity for improved in vitro-in vivo extrapolation (IVIVE) and prospective predictions. PBPK modeling shows promise as a useful tool for predicting intestinal metabolism for UGT substrates.

9.
Mol Pharm ; 7(2): 605-17, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20163161

RESUMO

P-Glycoprotein mediated efflux is one of the barriers limiting drug absorption from the intestine. Predictions of the intestinal P-glycoprotein function need to take into account the concentration dependency because high intestinal drug concentrations may saturate P-glycoprotein. However, the substrate binding site of P-glycoprotein lies inside the cells and the drug concentration at the binding site cannot be measured directly. Therefore, rigorous determination of concentration dependent P-glycoprotein kinetics is challenging. In this study, the effects of the aqueous boundary layers, extracellular pH and cellular retention on the apparent saturation kinetics of P-glycoprotein mediated transport of quinidine in an in vitro cell permeation setting were explored. The changes in the experimental conditions caused 1 order of magnitude variation in the apparent affinity to P-glycoprotein (K(m,app)) and a 5-fold difference in the maximum effective P-glycoprotein mediated transport rate of quinidine (V(max,app)). However, fitting the concentration data into a compartmental model which accounted for the aqueous boundary layers, cell membranes and cellular retention suggested that the P-glycoprotein function per se was not altered, it was the differences in the passive transfer of quinidine which changed the apparent transport kinetics. These results provide further insight into the dynamics of the P-glycoprotein mediated transport and on the roles of several confounding factors involved in in vitro experimental setting. Further, the results confirm the applicability of compartmental model based data analysis approach in the determination of active transporter kinetics.


Assuntos
Transporte Biológico Ativo/fisiologia , Quinidina/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Células CACO-2 , Linhagem Celular , Cães , Humanos , Cinética
10.
Eur J Pharm Sci ; 141: 105118, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669387

RESUMO

Beagle dog is a standard animal model for evaluating nonclinical pharmacokinetics of new drug candidates. Glucuronidation in intestine and liver is an important first-pass drug metabolic pathway, especially for phenolic compounds. This study evaluated the glucuronidation characteristics of several 7-hydroxycoumarin derivatives in beagle dog's intestine and liver in vitro. To this end, glucuronidation rates of 7-hydroxycoumarin (compound 1), 7-hydroxy-4-trifluoromethylcoumarin (2), 6-methoxy-7-hydroxycoumarin (3), 7-hydroxy-3-(4-tolyl)coumarin (4), 3-(4-fluorophenyl)coumarin (5), 7-hydroxy-3-(4-hydroxyphenyl)coumarin (6), 7-hydroxy-3-(4-methoxyphenyl)coumarin (7), and 7-hydroxy-3-(1H-1,2,4-tirazole)coumarin (8) were determined in dog's intestine and liver microsomes, as well as recombinant dog UGT1A enzymes. The glucuronidation rates of 1, 2 and 3 were 3-10 times higher in liver than in small intestine microsomes, whereas glucuronidation rates of 5, 6, 7 and 8 were similar in microsomes from both tissues. In the colon, glucuronidation of 1 and 2 was 3-5 times faster than in small intestine. dUGT1A11 glucuronidated efficiently all the substrates and was more efficient catalyst for 8 than any other dUGT1A. Other active enzymes were dUGT1A2 that glucuronidated efficiently 2, 3, 4, 5, 6 and 7, while dUGT1A10 glucuronidated efficiently 1, 2, 3, 4, 5 and 7. Kinetic analyses revealed that the compounds' Km values varied between 1.1 (dUGT1A10 and 2) and 250 µM (dUGT1A7 and 4). The results further strengthen the concept that dog intestine has high capacity for glucuronidation, and that different dUGT1As mediate glucuronidation with distinct substrates selectivity in dog and human.


Assuntos
Colo/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Intestino Delgado/metabolismo , Fígado/metabolismo , Umbeliferonas/metabolismo , Animais , Cães , Humanos , Microssomos/metabolismo
11.
J Pharmacol Exp Ther ; 328(3): 882-92, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19088303

RESUMO

The permeability estimation from cell monolayer permeation data is usually based on 100% recovery assumption. However, poor recovery is often seen in such experiments in practice but often neglected in data interpretation. In the present study, the cellular retention kinetics during Caco-2 permeation experiments of three passively transported compounds, weakly basic propranolol [(+/-)-1-isopropylamino-3-(1-naphthyloxy)-2-propanol], weakly acidic ibuprofen [alpha-methyl-4-(isobutyl)phenylacetic acid], and neutral testosterone (17beta-hydroxy-4-androsten-3-one), were determined. Furthermore, the effects of cellular retention kinetics on apparent permeability were evaluated, and the role of lysosomal sequestration in cellular retention of propranolol was explored. The cellular retention profiles were observed to be direction and concentration dependent, which may cause erroneous directionality and concentration dependence in permeability estimates. Furthermore, the lysosomal sequestration was demonstrated to contribute to the extent and kinetics of the cellular retention of propranolol.


Assuntos
Células CACO-2/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Lisossomos/metabolismo , Transporte Biológico , Citosol/metabolismo , Humanos , Ibuprofeno/metabolismo , Cinética , Macrolídeos/metabolismo , Macrolídeos/farmacologia , Modelos Biológicos , Propranolol/metabolismo , Testosterona/metabolismo
12.
Clin Pharmacokinet ; 58(6): 727-746, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30729397

RESUMO

Physiologically based pharmacokinetic modelling is well established in the pharmaceutical industry and is accepted by regulatory agencies for the prediction of drug-drug interactions. However, physiologically based pharmacokinetic modelling is valuable to address a much wider range of pharmaceutical applications, and new regulatory impact is expected as its full power is leveraged. As one example, physiologically based pharmacokinetic modelling is already routinely used during drug discovery for in-vitro to in-vivo translation and pharmacokinetic modelling in preclinical species, and this leads to the application of verified models for first-in-human pharmacokinetic predictions. A consistent cross-industry strategy in this application area would increase confidence in the approach and facilitate further learning. With this in mind, this article aims to enhance a previously published first-in-human physiologically based pharmacokinetic model-building strategy. Based on the experience of scientists from multiple companies participating in the GastroPlus™ User Group Steering Committee, new Absorption, Distribution, Metabolism and Excretion knowledge is integrated and decision trees proposed for each essential component of a first-in-human prediction. We have reviewed many relevant scientific publications to identify new findings and highlight gaps that need to be addressed. Finally, four industry case studies for more challenging compounds illustrate and highlight key components of the strategy.


Assuntos
Descoberta de Drogas/métodos , Modelos Biológicos , Preparações Farmacêuticas , Farmacocinética , Absorção Fisiológica , Simulação por Computador , Indústria Farmacêutica , Humanos , Taxa de Depuração Metabólica , Preparações Farmacêuticas/sangue , Preparações Farmacêuticas/química , Relação Quantitativa Estrutura-Atividade , Distribuição Tecidual
13.
Int J Pharm ; 346(1-2): 169-72, 2008 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-17624702

RESUMO

Reliable predictions of the role of P-glycoprotein in the pharmacokinetics are needed already at the early stage of drug development. In order to obtain meaningful in vitro-in vivo scaling factors, it is essential to know the factors affecting the in vitro results. In this study, the apparent P-glycoprotein-ATPase activation kinetics were determined using the cell membrane fraction of human MDR1-transfected insect cells. The apparent affinities to P-glycoprotein of basic verapamil and quinidine were higher at pH 7.4 than at pH 6.8. However, this shift in pH did not have a significant effect on the apparent affinity of acidic monensin. The protein concentration used in the assay did not affect the apparent activator affinities, but was inversely related to the maximum activation achieved. Thus, pH and protein concentration should be taken into account when interpreting the Pgp-ATPase data.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Adenosina Trifosfatases/química , Monensin/química , Quinidina/química , Verapamil/química , Animais , Humanos , Concentração de Íons de Hidrogênio , Cinética
14.
Eur J Pharm Biopharm ; 112: 85-95, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888143

RESUMO

Arginine, phenylalanine, and tryptophan have been previously shown to improve the solid-state stability of amorphous indomethacin. The present study investigates the ability of these amino acids to prolong the supersaturation of indomethacin in both aqueous and biorelevant conditions either when freely in solution or when formulated as co-amorphous mixtures. The co-amorphous amino acid-indomethacin mixtures (molar ratio 1:1) and amorphous indomethacin were prepared by cryomilling. Dissolution and precipitation tests were performed in buffer solutions (pH 5 and 6.5) and in Fed and Fasted State Simulated Intestinal Fluids (FeSSIF and FaSSIF, respectively). Precipitation tests were conducted with the solvent shift method. The supersaturation stability of indomethacin and the precipitation inhibitory effect of amino acids were evaluated by calculating the supersaturation factor and the excipient gain factor, respectively. Biorelevant media exerted a significant effect on indomethacin solubility but had little effect on the supersaturation stability. Arginine had the most significant impact on the dissolution properties of indomethacin, but also phenylalanine and tryptophan stabilized supersaturation in some media when formulated as co-amorphous mixtures with indomethacin. Only arginine stabilized supersaturation without co-amorphization, an effect only observed in media of pH 6.5. The unique behavior of the arginine-indomethacin mixture was further demonstrated by the abrupt formation of a precipitate, when an excess physical mixture of arginine and indomethacin was added to FeSSIF (pH 6.5). The solid-state investigation of this precipitate indicated that it probably consisted of crystalline arginine-indomethacin salt with possibly some residual crystalline starting materials.


Assuntos
Aminoácidos/química , Anti-Inflamatórios não Esteroides/química , Indometacina/química , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Difração de Pó , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Proteomics Clin Appl ; 9(7-8): 732-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25676057

RESUMO

Pharmacokinetics (PK) refers to the time course of drug concentrations in the body and since knowledge of PK aids understanding of drug efficacy and safety, numerous PK studies are performed in animals and humans during the drug development process. In vitro to in vivo extrapolation and physiologically based pharmacokinetic (PBPK) modeling are tools that integrate data from various in silico, in vitro, and in vivo sources to deliver mechanistic quantitative simulations of in vivo PK. PBPK models are used to predict human PK and to evaluate the effects of intrinsic factors such as organ dysfunction, age, and genetics as well as extrinsic factors such as co-administered drugs. In recent years, the use of PBPK within the industry has greatly increased. However, insufficient data on how the abundance of metabolic enzymes and membrane transporters vary in different human patient populations and in different species has been a limitation. A major advance is therefore expected through reliable quantification of the abundance of these proteins in tissues. This review describes the role of PBPK modeling in drug discovery and development, outlines the assumptions involved in integrating protein abundance data, and describes the advances made and expected in determining abundance of relevant proteins through mass spectrometric techniques.


Assuntos
Descoberta de Drogas , Modelos Biológicos , Proteômica/métodos , Bibliotecas de Moléculas Pequenas/farmacocinética , Absorção Fisiológica , Animais , Humanos , Metabolismo , Proteoma/metabolismo
16.
Basic Clin Pharmacol Toxicol ; 117(3): 156-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25626156

RESUMO

Fentanyl is used for pain treatment during pregnancy in human beings and animals. However, fentanyl pharmacokinetics during pregnancy has not been fully established. The aim of this study was to characterize fentanyl pharmacokinetics in pregnant sheep after intravenous and transdermal dosing during surgical procedure performed to ewe and foetus. Pharmacokinetic parameters reported for non-pregnant sheep and nominal transdermal dose rate were utilized for a priori calculation to achieve analgesic fentanyl concentration (0.5-2 ng/ml) in maternal plasma. A total of 20 Aland landrace ewes at 118-127 gestational days were used. In the first protocol, 1 week before surgery, 10 animals received 2 µg/kg fentanyl intravenous bolus, and on the operation day, transdermal fentanyl patches at nominal dose rate of 2 µg/kg/hr were applied to antebrachium, and ewes were then given a 2 µg/kg intravenous bolus followed by an intra-operative 2.5 µg/kg/hr infusion. In the second protocol, 10 animals received fentanyl only as transdermal patches on the operation day and oxycodone for rescue analgesia. The data were analysed with population pharmacokinetic modelling. Intra- and post-operative fentanyl concentrations were similar and slightly lower than the a priori predictions, and elimination and distribution clearances appeared slower during than before or after the surgery. Transdermal patches provided sustained fentanyl absorption for up to 5 days, but the absorption rate was slower than the nominal dose rate and showed a high interindividual variability. Further research is warranted to evaluate the clinical relevance of the observations made in sheep.


Assuntos
Fentanila/farmacocinética , Administração Cutânea , Animais , Relação Dose-Resposta a Droga , Feminino , Fentanila/administração & dosagem , Fentanila/sangue , Infusões Intravenosas , Injeções Intravenosas , Gravidez , Ovinos
17.
Eur J Pharm Sci ; 56: 120-30, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24576578

RESUMO

Oral delivery is the preferred route of administration and therefore good absorption after oral dosing is a prerequisite for a compound to be successful in the clinic. The prediction of oral bioavailability from in vitro permeability assays is thus a valuable tool during drug discovery and development. Caco-2 cell monolayers mimic the human intestinal epithelium in many aspects. These monolayers form tight junctions between cells and have been widely used as a model of human intestinal absorption. Caco-2 cells also express a variety of transporter proteins although the transformed nature of the cells results in unpredictable differentiation markers, transport properties and enzyme expression. Thus various modifications of the Caco-2 assay are used in laboratories across the globe. The purpose of this paper is to provide an overview of a time and resource saving 7-day Caco-2 assay protocol. We also discuss the impact of various experimental conditions on permeability measurements and its applications during lead optimization in early discovery and for clinical candidate characterization, specifically for prediction of absorption in human, at a later stage in drug development.


Assuntos
Bioensaio , Absorção Intestinal , Células CACO-2 , Descoberta de Drogas , Humanos , Preparações Farmacêuticas/metabolismo
18.
Curr Drug Metab ; 14(1): 102-11, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22497570

RESUMO

This review provides an overview of the in vitro methods currently used in studies of intestinal drug metabolism and active efflux with a special emphasis on the efflux- metabolism interplay. These methods include e.g. expressed enzymes or efflux transporters, fractionated intestinal cells, cell lines, primary cells, intestinal segments and other tissue preparations. Pharmacokinetics of effluxmetabolism interplay is often very complicated, possibly involving saturation, stimulation and/or inhibition of one or both of these mechanisms. Parent drug and/or metabolite(s) can be substrates for several enzymes and/or efflux proteins. These detoxifying proteins may alter the exposure of drugs to each other and, consequently, their contributions to the overall drug elimination. Depending on the complexity of the in vitro system used, different kinds of information can be extracted from the results. Simple methods concentrating on single mechanisms provide easily interpretable information, but neglect the interplay between various mechanisms influencing the kinetics in a whole organism. More complex experimental systems mimic the mechanistic complexity of in vivo setting better, but at the same time the interpretation and utilization of the results becomes more challenging. Advantages and limitations of various in vitro systems are addressed and consideration is given to the physiological relevance of the results obtained and there is discussion of approaches for in vitro - in vivo translation of the data.


Assuntos
Mucosa Intestinal/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Administração Oral , Animais , Disponibilidade Biológica , Humanos
19.
Eur J Pharm Sci ; 47(2): 375-86, 2012 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-22759901

RESUMO

First pass metabolism in the intestinal mucosa is a determinant of oral bioavailability of CYP3A substrates and so the prediction of intestinal availability (Fg) of potential drug candidates is important. Although intestinal metabolism can be modeled in commercial physiologically based pharmacokinetic (PBPK) software tools, a thorough evaluation of prediction performance is lacking. The current study evaluates the accuracy and precision of GastroPlus Fg predictions for 20 CYP3A substrates using in vitro and in silico input data for metabolic clearance and membrane permeation, and illustrates a potential impact of intestinal metabolism modeling on decision making in a drug Research and Development project. This analysis supports that CYP3A mediated metabolic clearance measured in human liver microsomes can be used to predict gut wall metabolism. Using values scaled from in vitro cell permeability as input for effective jejunal permeability resulted in good Fg prediction accuracy (no significant bias and ∼95% of predictions within 2 fold from in vivo estimated Fg), whereas simulations with in silico predicted permeability tended to overestimate gut metabolism (40% of Fg predictions under predicted more than 2 fold) ±2 fold range as an estimate of imprecision in metabolic clearance and permeability inputs propagated to >5 and <2 fold ranges of predicted Fg for compounds with <30% and >75% in vivo Fg, respectively, suggesting lower precision of predictions for high extraction compounds. Furthermore, parameter sensitivity analysis suggests that limitations in solubility or dissolution may either decrease Fg by preventing saturation of metabolism or increase Fg by shifting the site of absorption towards the colon where expression of CYP3A is low. The case example illustrates how, when accounting for the associated uncertainty in predicted pharmacokinetics and linking to predictive models for efficacy, PBPK modeling of intestinally metabolized compounds can support decision making in drug Research and Development.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Software , Simulação por Computador , Humanos , Farmacocinética , Reprodutibilidade dos Testes
20.
Basic Clin Pharmacol Toxicol ; 106(3): 180-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20030630

RESUMO

One major prerequisite for an orally administered drug is the ability to cross the intestinal epithelia from intestinal lumen into the blood circulation. Therefore, the absorption potential of molecules is studied early on during the drug development process. Permeation experiments using cultured cell monolayers are one of the most often applied methods to screen and also to predict in more detail the intestinal absorption potential of molecules in preclinical phase. Furthermore, these studies are also used to screen the molecules for transporter interactions as well as for more detailed mechanistic studies of the transfer routes involved. Several mathematical and computational models with complexity varying from simple non-mechanistic single barrier models to mechanistically more detailed compartmental models have been developed to describe the drug disposition during these in vitro permeation experiments. This MiniReview gives an overview of these models and their applications. Also the implications of these models to the prediction of intestinal absorption in vivo are discussed.


Assuntos
Absorção Intestinal/fisiologia , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Transporte Biológico , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Preparações Farmacêuticas/administração & dosagem , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA