Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nucleic Acids Res ; 52(6): 2904-2923, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153160

RESUMO

Most common genetic variants associated with disease are located in non-coding regions of the genome. One mechanism by which they function is through altering transcription factor (TF) binding. In this study, we explore how genetic variation is connected to differences in the regulatory landscape of livers from C57BL/6J and 129S1/SvImJ mice fed either chow or a high-fat diet. To identify sites where regulatory variation affects TF binding and nearby gene expression, we employed an integrative analysis of H3K27ac ChIP-seq (active enhancers), ATAC-seq (chromatin accessibility) and RNA-seq (gene expression). We show that, across all these assays, the genetically driven (i.e. strain-specific) differences in the regulatory landscape are more pronounced than those modified by diet. Most notably, our analysis revealed that differentially accessible regions (DARs, N = 29635, FDR < 0.01 and fold change > 50%) are almost always strain-specific and enriched with genetic variation. Moreover, proximal DARs are highly correlated with differentially expressed genes. We also show that TF binding is affected by genetic variation, which we validate experimentally using ChIP-seq for TCF7L2 and CTCF. This study provides detailed insights into how non-coding genetic variation alters the gene regulatory landscape, and demonstrates how this can be used to study the regulatory variation influencing TF binding.


Assuntos
Cromatina , Regulação da Expressão Gênica , Camundongos , Animais , Cromatina/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Variação Genética
2.
Am J Hum Genet ; 108(3): 411-430, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33626337

RESUMO

Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs). However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational predictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether, our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we demonstrate how the deletion/activation of a single enhancer leads to changes in the expression of many target genes located in a shared chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal regulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.


Assuntos
Doença da Artéria Coronariana/genética , Elementos Facilitadores Genéticos/genética , Predisposição Genética para Doença , Locos de Características Quantitativas/genética , Alelos , Cromatina/genética , Doença da Artéria Coronariana/patologia , Feminino , Estudo de Associação Genômica Ampla/métodos , Genômica , Humanos , Fígado/metabolismo , Masculino , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/genética , Fatores de Risco
3.
Am J Physiol Endocrinol Metab ; 323(2): E123-E132, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723225

RESUMO

Fibroblast growth factor 21 (FGF21) is increased acutely by carbohydrate ingestion and is elevated in patients with type 2 diabetes (T2D). However, the physiological significance of increased FGF21 in humans remains largely unknown. We examined whether FGF21 contributed to the metabolic improvements observed following treatment of patients with T2D with either triple (metformin/pioglitazone/exenatide) or conventional (metformin/insulin/glipizide) therapy for 3 yr. Forty-six patients with T2D were randomized to receive either triple or conventional therapy to maintain HbA1c < 6.5%. A 2-h 75-g oral glucose tolerance test (OGTT) was performed at baseline and following 3 years of treatment to assess glucose tolerance, insulin sensitivity, and ß-cell function. Plasma total and bioactive FGF21 levels were quantitated before and during the OGTT at both visits. Patients in both treatment arms experienced significant improvements in glucose control, but insulin sensitivity and ß-cell function were markedly increased after triple therapy. At baseline, FGF21 levels were regulated acutely during the OGTT in both groups. After treatment, fasting total and bioactive FGF21 levels were significantly reduced in patients receiving triple therapy, but there was a relative increase in the proportion of bioactive FGF21 compared with that observed in conventionally treated subjects. Relative to baseline studies, triple therapy treatment also significantly modified FGF21 levels in response to a glucose load. These changes in circulating FGF21 were correlated with markers of improved glucose control and insulin sensitivity. Alterations in the plasma FGF21 profile may contribute to the beneficial metabolic effects of pioglitazone and exenatide in human patients with T2D.NEW & NOTEWORTHY In patients with T2D treated with a combination of metformin/pioglitazone/exenatide (triple therapy), we observed reduced total and bioactive plasma FGF21 levels and a relative increase in the proportion of circulating bioactive FGF21 compared with that in patients treated with metformin and sequential addition of glipizide and basal insulin glargine (conventional therapy). These data suggest that FGF21 may contribute, at least in part, to the glycemic benefits observed following combination therapy in patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Tiazolidinedionas , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exenatida , Fatores de Crescimento de Fibroblastos , Glipizida , Hemoglobinas Glicadas/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Peptídeos , Pioglitazona , Peçonhas
4.
Cell Mol Life Sci ; 77(20): 4093-4115, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31820036

RESUMO

Intercellular communication is fundamental to the survival and maintenance of all multicellular systems, whereas dysregulation of communication pathways can drive cancer progression. Extracellular vesicles (EVs) are mediators of cell-to-cell communication that regulate a variety of cellular processes involved in tumor progression. Overexpression of a specific plasma membrane enzyme, hyaluronan synthase 3 (HAS3), is one of the factors that can induce EV shedding. HAS3, and particularly its product hyaluronan (HA), are carried by EVs and are known to be associated with the tumorigenic properties of cancer cells. To elucidate the specific effects of cancerous, HAS3-induced EVs on target cells, normal human keratinocytes and melanoma cells were treated with EVs derived from GFP-HAS3 expressing metastatic melanoma cells. We found that the HA receptor CD44 participated in the regulation of EV binding to target cells. Furthermore, GFP-HAS3-positive EVs induced HA secretion, proliferation and invasion of target cells. Our results suggest that HAS3-EVs contains increased quantities of IHH, which activates the target cell hedgehog signaling cascade and leads to the activation of c-Myc and regulation of claspin expression. This signaling of IHH in HAS3-EVs resulted in increased cell proliferation. Claspin immunostaining correlated with HA content in human cutaneous melanocytic lesions, supporting our in vitro findings and suggesting a reciprocal regulation between claspin expression and HA synthesis. This study shows for the first time that EVs originating from HAS3 overexpressing cells carry mitogenic signals that induce proliferation and epithelial-to-mesenchymal transition in target cells. The study also identifies a novel feedback regulation between the hedgehog signaling pathway and HA metabolism in melanoma, mediated by EVs carrying HA and IHH.


Assuntos
Vesículas Extracelulares/genética , Proteínas Hedgehog/genética , Hialuronan Sintases/genética , Melanoma/genética , Proteínas Proto-Oncogênicas c-myc/genética , Regulação para Cima/genética , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Humanos , Receptores de Hialuronatos/genética , Transdução de Sinais/genética
5.
Nucleic Acids Res ; 46(3): 1124-1138, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29161413

RESUMO

Phospholipids, such as 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC), are the major components of cell membranes. Their exposure to reactive oxygen species creates oxidized phospholipids, which predispose to the development of chronic inflammatory diseases and metabolic disorders through endothelial activation and dysfunction. Although the effects of oxidized PAPC (oxPAPC) on endothelial cells have been previously studied, the underlying molecular mechanisms evoking biological responses remain largely unknown. Here, we investigated the molecular mechanisms of oxPAPC function with a special emphasis on NRF2-regulated microRNAs (miRNAs) in human umbilical vein endothelial cells (HUVECs) utilizing miRNA profiling, global run-on sequencing (GRO-seq), genome-wide NRF2 binding model, and RNA sequencing (RNA-seq) with miRNA overexpression and silencing. We report that the central regulators of endothelial activity, KLF2 for quiescence, PFKFB3 for glycolysis, and VEGFA, FOXO1 and MYC for growth and proliferation, are regulated by transcription factor NRF2 and the NRF2-regulated miR-106b∼25 cluster member, miR-93, in HUVECs. Mechanistically, oxPAPC was found to induce glycolysis and proliferation NRF2-dependently, and oxPAPC-dependent induction of the miR-106b∼25 cluster was mediated by NRF2. Additionally, several regulatory loops were established between NRF2, miR-93 and the essential regulators of healthy endothelium, collectively implying that NRF2 controls the switch between the quiescent and the proliferative endothelial states together with miR-93.


Assuntos
Glicólise/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Fosfatidilcolinas/farmacologia , Fosfofrutoquinase-2/genética , Antagomirs/genética , Antagomirs/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glicólise/genética , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfofrutoquinase-2/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Biomacromolecules ; 19(7): 2708-2720, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29614220

RESUMO

Recent developments in ionic liquid electrolytes for cellulose or biomass dissolution has also allowed for high-resolution 1H and 13C NMR on very high molecular weight cellulose. This permits the development of advanced liquid-state quantitative NMR methods for characterization of unsubstituted and low degree of substitution celluloses, for example, surface-modified nanocelluloses, which are insoluble in all molecular solvents. As such, we present the use of the tetrabutylphosphonium acetate ([P4444][OAc]):DMSO- d6 electrolyte in the 1D and 2D NMR characterization of poly(methyl methacrylate) (PMMA)-grafted cellulose nanocrystals (CNCs). PMMA- g-CNCs was chosen as a difficult model to study, to illustrate the potential of the technique. The chemical shift range of [P4444][OAc] is completely upfield of the cellulose backbone signals, avoiding signal overlap. In addition, application of diffusion-editing for 1H and HSQC was shown to be effective in the discrimination between PMMA polymer graft resonances and those from low molecular weight components arising from the solvent system. The bulk ratio of methyl methacrylate monomer to anhydroglucose unit was determined using a combination of HSQC and quantitative 13C NMR. After detachment and recovery of the PMMA grafts, through methanolysis, DOSY NMR was used to determine the average self-diffusion coefficient and, hence, molecular weight of the grafts compared to self-diffusion coefficients for PMMA GPC standards. This finally led to a calculation of both graft length and graft density using liquid-state NMR techniques. In addition, it was possible to discriminate between triads and tetrads, associated with PMMA tacticity, of the PMMA still attached to the CNCs (before methanolysis). CNC reducing end and sulfate half ester resonances, from sulfuric acid hydrolysis, were also assignable. Furthermore, other biopolymers, such as hemicelluloses and proteins (silk and wool), were found to be soluble in the electrolyte media, allowing for wider application of this method beyond just cellulose analytics.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Celulose/análogos & derivados , Nanopartículas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/instrumentação , Dimetil Sulfóxido/química , Eletrólitos/química , Polimetil Metacrilato/química
7.
Nucleic Acids Res ; 44(4): 1760-75, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26826707

RESUMO

Transcription factor binding specificity is crucial for proper target gene regulation. Motif discovery algorithms identify the main features of the binding patterns, but the accuracy on the lower affinity sites is often poor. Nuclear factor E2-related factor 2 (NRF2) is a ubiquitous redox-activated transcription factor having a key protective role against endogenous and exogenous oxidant and electrophile stress. Herein, we decipher the effects of sequence variation on the DNA binding sequence of NRF2, in order to identify both genome-wide binding sites for NRF2 and disease-associated regulatory SNPs (rSNPs) with drastic effects on NRF2 binding. Interactions between NRF2 and DNA were studied using molecular modelling, and NRF2 chromatin immunoprecipitation-sequence datasets together with protein binding microarray measurements were utilized to study binding sequence variation in detail. The binding model thus generated was used to identify genome-wide binding sites for NRF2, and genomic binding sites with rSNPs that have strong effects on NRF2 binding and reside on active regulatory elements in human cells. As a proof of concept, miR-126-3p and -5p were identified as NRF2 target microRNAs, and a rSNP (rs113067944) residing on NRF2 target gene (Ferritin, light polypeptide, FTL) promoter was experimentally verified to decrease NRF2 binding and result in decreased transcriptional activity.


Assuntos
Genoma Humano , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Transcrição Gênica , Algoritmos , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas , Ligação Proteica
8.
Molecules ; 23(5)2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29702628

RESUMO

Cancer is a widespread and life-threatening disease and its early-stage diagnosis is vital. One of the most effective, non-invasive tools in medical diagnostics is magnetic resonance imaging (MRI) with the aid of contrast agents. Contrast agents that are currently in clinical use contain metals, causing some restrictions in their use. Also, these contrast agents are mainly non-specific without any tissue targeting capabilities. Subsequently, the interest has notably increased in the research of organic, metal-free contrast agents. This study presents a new, stable organic radical, TEEPO-Met, where a radical moiety 2,2,6,6-tetraethylpiperidinoxide (TEEPO) is attached to an amino acid, methionine (Met), as a potentially tumour-targeting moiety. We describe the synthesis, stability assessment with electron paramagnetic resonance (EPR) spectroscopy and relaxation enhancement abilities by an in vitro nuclear magnetic resonance (NMR) and phantom MRI studies of TEEPO-Met. The new compound proved to be stable notably longer than the average imaging time in conditions mimicking a biological matrix. Also, it significantly reduced the relaxation times of water, making it a promising candidate as a novel tumour targeting contrast agent for MRI.


Assuntos
Meios de Contraste/síntese química , Óxidos N-Cíclicos/química , Compostos Heterocíclicos/síntese química , Metionina/química , Piperidinas/química , Animais , Meios de Contraste/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos Heterocíclicos/química , Humanos , Imageamento por Ressonância Magnética/métodos , Estrutura Molecular , Neoplasias/diagnóstico por imagem , Imagens de Fantasmas
9.
Angew Chem Int Ed Engl ; 57(36): 11613-11617, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29987916

RESUMO

Comprehensive spectroscopic kinetic studies illustrate an alternative mechanism for the traditional free-carbene intermediated H/D exchange reaction of 1,3-dialkylimidazolium salts under neutral (D2 O) and acidic conditions (DCl/D2 O 35 wt % solution). The deuteration of high purity [bmim]Cl in D2 O is studied at different temperatures, in absence of catalyst or impurities, to yield an activation energy. DFT transition-state modelling, of a small water cluster and [bmim] cation, also yields an activation energy which strongly supports the proposed mechanism. The presence of basic impurities are shown to significantly enhance the exchange reaction, which brings into question the need for further analysis of technical purities of ionic liquids and the implications for a wide range of chemical reactions in such media.

10.
BMC Genomics ; 18(1): 132, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166722

RESUMO

BACKGROUND: The nuclear hormone receptor superfamily acts as a genomic sensor of diverse signals. Their actions are often intertwined with other transcription factors. Nuclear hormone receptors are targets for many therapeutic drugs, and include the vitamin D receptor (VDR). VDR signaling is pleotropic, being implicated in calcaemic function, antibacterial actions, growth control, immunomodulation and anti-cancer actions. Specifically, we hypothesized that the biologically significant relationships between the VDR transcriptome and phenotype-associated biology could be discovered by integrating the known VDR transcription factor binding sites and all published trait- and disease-associated SNPs. By integrating VDR genome-wide binding data (ChIP-seq) with the National Human Genome Research Institute (NHGRI) GWAS catalog of SNPs we would see where and which target gene interactions and pathways are impacted by inherited genetic variation in VDR binding sites, indicating which of VDR's multiple functions are most biologically significant. RESULTS: To examine how genetic variation impacts VDR function we overlapped 23,409 VDR genomic binding peaks from six VDR ChIP-seq datasets with 191,482 SNPs, derived from GWAS-significant SNPs (Lead SNPs) and their correlated variants (r 2 > 0.8) from HapMap3 and the 1000 genomes project. In total, 574 SNPs (71 Lead and 503 SNPs in linkage disequilibrium with Lead SNPs) were present at VDR binding loci and associated with 211 phenotypes. For each phenotype a hypergeometric test was used to determine if SNPs were enriched at VDR binding sites. Bonferroni correction for multiple testing across the 211 phenotypes yielded 42 SNPs that were either disease- or phenotype-associated with seven predominately immune related including self-reported allergy; esophageal cancer was the only cancer phenotype. Motif analyses revealed that only two of these 42 SNPs reside within a canonical VDR binding site (DR3 motif), and that 1/3 of the 42 SNPs significantly impacted binding and gene regulation by other transcription factors, including NF-κB. This suggests a plausible link for the potential cross-talk between VDR and NF-κB. CONCLUSIONS: These analyses showed that VDR peaks are enriched for SNPs associated with immune phenotypes suggesting that VDR immunomodulatory functions are amongst its most important actions. The enrichment of genetic variation in non-DR3 motifs suggests a significant role for the VDR to bind in multimeric complexes containing other transcription factors that are the primary DNA binding component. Our work provides a framework for the combination of ChIP-seq and GWAS findings to provide insight into the underlying phenotype-associated biology of a given transcription factor.


Assuntos
Estudo de Associação Genômica Ampla , Imunidade/genética , NF-kappa B/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Linhagem Celular , Genômica , Humanos , Desequilíbrio de Ligação , Ligação Proteica , Fatores de Transcrição/metabolismo
11.
Biochim Biophys Acta ; 1849(3): 300-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25482012

RESUMO

The vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is the high affinity ligand of the transcription factor vitamin D receptor (VDR) and therefore a direct regulator of transcription. Transcriptome-wide analysis of THP-1 human monocytes had indicated more than 600 genes to be significantly (p<0.05) stimulated after 4h incubation with 1,25(OH)2D3, but only 67 of them where more than 1.5-fold up-regulated. These include the genes encoding for the transcription factors BCL6, NFE2, POU4F2 and ELF4, which are controlled by one or two VDR binding sites within their chromosomal domains. The latter are defined via DNA loop formation mediated by the transcription factor CTCF that is highly conserved in its genome-wide loci. We found BCL6 being most responsive to 1,25(OH)2D3 and selected it for further analysis. An incubation of THP-1 cells with 1,25(OH)2D3 for 24 h resulted in a significant (p<0.001) change in the mRNA expression of more than 1600 genes, of which 132 were at least 2-fold up-regulated. About half of the latter genes are secondary 1,25(OH)2D3 targets, since they do not carry any VDR binding site within their chromosomal domain. Chromatin immunoprecipitation sequencing datasets indicated that the majority of these domains contain a BCL6 binding site. We followed the secondary transcriptional response to 1,25(OH)2D3 for eight representative gene examples and confirmed the binding of CTCF and BCL6 to their respective chromosomal domains. In conclusion, our study indicated that in monocytes most of the physiological responses to 1,25(OH)2D3 involve the action of the transcription factor BCL6.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Subunidade p45 do Fator de Transcrição NF-E2/biossíntese , Fator de Transcrição Brn-3B/biossíntese , Fatores de Transcrição/biossíntese , Vitamina D/administração & dosagem , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-bcl-6 , RNA Mensageiro/biossíntese , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição Brn-3B/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/efeitos dos fármacos , Vitamina D/análogos & derivados
12.
J Org Chem ; 81(9): 3848-59, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27080560

RESUMO

This report describes an efficient procedure for the generation and isolation of various thymine and thymidine 5,6-epoxides from the corresponding trans-5,6-bromohydrins by reaction with triethylamine. The quantitative isolation of the epoxides, accomplished by solvent precipitation of triethylamine hydrobromide, enabled their regiospecific ring-opening at C6 position by organometallic nucleophiles. The reaction was amenable to a broad range of alkyl, aryl, alkenyl, and alkynyl organomagnesium, -zinc, -aluminum, or -boron reagents, although the reactivity was strongly affected by the electronic effects of N3 protecting group. Additionally, the reaction featured excellent cis-diastereoselectivity providing access to C6-carbon-functionalized dihydrothymidine cis-alcohols, which are synthetic derivatives of UV-induced DNA lesions, namely, thymidine (6-4) photoproducts.


Assuntos
Álcoois/química , Compostos de Boro/química , DNA/química , Compostos de Epóxi/química , Compostos Organometálicos/química , Timidina/química , Timina/química , Estereoisomerismo , Timina/análogos & derivados
13.
Nucleic Acids Res ; 42(13): 8310-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981513

RESUMO

Androgen receptor (AR) plays an important regulatory role in prostate cancer. AR's transcriptional activity is regulated by androgenic ligands, but also by post-translational modifications, such as SUMOylation. To study the role of AR SUMOylation in genuine chromatin environment, we compared androgen-regulated gene expression and AR chromatin occupancy in PC-3 prostate cancer cell lines stably expressing wild-type (wt) or doubly SUMOylation site-mutated AR (AR-K386R,K520R). Our genome-wide gene expression analyses reveal that the SUMOylation modulates the AR function in a target gene and pathway selective manner. The transcripts that are differentially regulated by androgen and SUMOylation are linked to cellular movement, cell death, cellular proliferation, cellular development and cell cycle. Fittingly, SUMOylation mutant AR cells proliferate faster and are more sensitive to apoptosis. Moreover, ChIP-seq analyses show that the SUMOylation can modulate the chromatin occupancy of AR on many loci in a fashion that parallels their differential androgen-regulated expression. De novo motif analyses reveal that FOXA1, C/EBP and AP-1 motifs are differentially enriched at the wtAR- and the AR-K386R,K520R-preferred genomic binding positions. Taken together, our data indicate that SUMOylation does not simply repress the AR activity, but it regulates AR's interaction with the chromatin and the receptor's target gene selection.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , Receptores Androgênicos/metabolismo , Sumoilação , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Células HEK293 , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Transcrição Gênica
14.
Nucleic Acids Res ; 42(22): 13646-61, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25414334

RESUMO

In the liver Wnt-signaling contributes to the metabolic fate of hepatocytes, but the precise role of the TCF7L2 in this process is unknown. We employed a temporal RNA-Seq approach to examine gene expression 3-96 h following Tcf7l2 silencing in rat hepatoma cells, and combined this with ChIP-Seq to investigate mechanisms of target gene regulation by TCF7L2. Silencing Tcf7l2 led to a time-dependent appearance of 406 differentially expressed genes (DEGs), including key regulators of cellular growth and differentiation, and amino acid, lipid and glucose metabolism. Direct regulation of 149 DEGs was suggested by strong proximal TCF7L2 binding (peak proximity score > 10) and early mRNA expression changes (≤ 18 h). Indirect gene regulation by TCF7L2 likely occurred via alternate transcription factors, including Hnf4a, Foxo1, Cited2, Myc and Lef1, which were differentially expressed following Tcf7l2 knock-down. Tcf7l2-silencing enhanced the expression and chromatin occupancy of HNF4α, and co-siRNA experiments revealed that HNF4α was required for the regulation of a subset of metabolic genes by TCF7L2, particularly those involved in lipid and amino-acid metabolism. Our findings suggest TCF7L2 is an important regulator of the hepatic phenotype, and highlight novel mechanisms of gene regulation by TCF7L2 that involve interplay between multiple hepatic transcriptional pathways.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas Experimentais/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , Sítios de Ligação , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Inativação Gênica , Genoma , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Ratos , Análise de Sequência de DNA , Análise de Sequência de RNA , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Org Biomol Chem ; 13(42): 10548-55, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26337032

RESUMO

(+)-Dehydroabietylamine (1a), the novel derivatives (2a-6a) and their NTf2 salts (1b-6b) were tested as chiral NMR solvating agents for the resolution of enantiomers of the model compound Mosher's acid (7) and its n-Bu4N salt (8). Best enantiomeric discrimination of 7 was obtained using bisdehydroabietylamino-N(1),N(2)-ethane-1,2-diamine (6a), and of 8 using N-(dehydroabietyl)-2-(dehydroabietylamino)ethanaminium bis((trifluoromethyl)-sulfonyl)-amide (6b). For the maximal resolution of enantiomers of 8, 1.0 eq. of 6b were needed. However, 0.5 eq. of 6a sufficed for the maximal resolution of enantiomers of 7. Enantiomeric excess studies were successfully conducted using 6a and 6b. The capability of 6a and 6b to recognize the enantiomers of various α-substituted carboxylic acids and their n-Bu4N salts were examined. Best resolutions were observed for aliphatic and aromatic carboxylic acids bearing an electronegative α-substituent. Now the ee studies on such non-aromatic carboxylic acids are also feasible.


Assuntos
Abietanos/química , Aminas/química , Ácidos Carboxílicos/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
16.
MAGMA ; 28(1): 23-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24770631

RESUMO

OBJECT: To evaluate functional magnetic resonance imaging (fMRI) and simultaneous electroencephalography (EEG)-fMRI data quality in an organization using several magnetic resonance imaging (MRI) systems. MATERIALS AND METHODS: Functional magnetic resonance imaging measurements were carried out twice with a uniform gel phantom on five different MRI systems with field strengths of 1.5 and 3.0 T. Several image quality parameters were measured with automatic analysis software. For simultaneous EEG-fMRI, data quality was evaluated on 3.0 T systems, and the phantom results were compared to data on human volunteers. RESULTS: The fMRI quality parameters measured with different MRI systems were on an acceptable level. The presence of the EEG equipment caused superficial artifacts on the phantom image. The typical artifact depth was 15 mm, and no artifacts were observed in the brain area in the images of volunteers. Average signal-to-noise ratio (SNR) reduction in the phantom measurements was 15 %, a reduction of SNR similar to that observed in the human data. We also detected minor changes in the noise of the EEG signal during the phantom measurement. CONCLUSION: The phantom proved valuable in the successful evaluation of the data quality of fMRI and EEG-fMRI. The results fell within acceptable limits. This study demonstrated a repeatable method to measure and follow up on the data quality of simultaneous EEG-fMRI.


Assuntos
Mapeamento Encefálico/normas , Encéfalo/fisiologia , Eletroencefalografia/normas , Imageamento por Ressonância Magnética/normas , Imagens de Fantasmas/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Mapeamento Encefálico/instrumentação , Confiabilidade dos Dados , Eletroencefalografia/instrumentação , Desenho de Equipamento , Finlândia , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Aumento da Imagem/normas , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/instrumentação , Imagem Multimodal/instrumentação , Imagem Multimodal/métodos , Imagem Multimodal/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Nucleic Acids Res ; 41(1): 110-24, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23093607

RESUMO

The nuclear hormone 1α,25-dihydroxyvitamin D(3) (1α,25(OH)(2)D(3) or 1,25D) regulates its target genes via activation of the transcription factor vitamin D receptor (VDR) far more specifically than the chromatin modifier trichostatin A (TsA) via its inhibitory action on histone deacetylases. We selected the thrombomodulin gene locus with its complex pattern of five VDR binding sites and multiple histone acetylation and open chromatin regions as an example to investigate together with a number of reference genes, the primary transcriptional responses to 1α,25(OH)(2)D(3) and TsA. Transcriptome-wide, 18.4% of all expressed genes are either up-or down-regulated already after a 90 min TsA treatment; their response pattern to 1α,25(OH)(2)D(3) and TsA sorts them into at least six classes. TsA stimulates a far higher number of genes than 1α,25(OH)(2)D(3) and dominates the outcome of combined treatments. However, 200 TsA target genes can be modulated by 1α,25(OH)(2)D(3) and more than 1000 genes respond only when treated with both compounds. The genomic view on the genes suggests that the degree of acetylation at transcription start sites and VDR binding regions may determine the effect of TsA on mRNA expression and its interference with 1α,25(OH)(2)D(3). Our findings hold true also for other HDAC inhibitors and may have implications on dual therapies using chromatin modifiers and nuclear receptor ligands.


Assuntos
Calcitriol/farmacologia , Cromatina/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Receptores de Calcitriol/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica , Acetilação , Sítios de Ligação , Linhagem Celular Tumoral , Histonas/metabolismo , Humanos , Trombomodulina/genética , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
18.
Molecules ; 20(11): 20873-86, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26610454

RESUMO

Chiral tertiary and quaternary amine solvating agents for NMR spectroscopy were synthesized from the wood resin derivative (+)-dehydroabietylamine (2). The resolution of enantiomers of model compounds [Mosher's acid (3) and its n-Bu4N salt (4)] (guests) by (+)-dehydroabietyl-N,N-dimethylmethanamine (5) and its ten different ammonium salts (hosts) was studied. The best results with 3 were obtained using 5 while with 4 the best enantiomeric resolution was obtained using (+)-dehydroabietyl-N,N-dimethylmethanaminium bis(trifluoromethane-sulfonimide) (6). The compounds 5 and 6 showed a 1:1 complexation behaviour between the host and guest. The capability of 5 and 6 to recognize the enantiomers of various α-substituted carboxylic acids and their n-Bu4N salts in enantiomeric excess (ee) determinations was demonstrated. A modification of the RES-TOCSY NMR pulse sequence is described, allowing the enhancement of enantiomeric discrimination when the resolution of multiplets is insufficient.


Assuntos
Aminas/química , Espectroscopia de Ressonância Magnética , Resinas Vegetais/química , Solventes/química , Madeira/química , Aminas/síntese química , Aminas/isolamento & purificação , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular , Solventes/síntese química , Solventes/isolamento & purificação
19.
Angew Chem Int Ed Engl ; 54(48): 14321-5, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26437764

RESUMO

The addition of Barton's base has a dramatic effect on the classic rhodium(III)-mediated hydrogenations promoted by Wilkinson's catalyst. Following the initial oxidative addition, a barrierless reductive elimination of HCl from the traditional rhodium(III) intermediates instantly produces a rhodium(I) monohydride species, which is remarkably reactive in the hydrogenation of several internal alkynes and functionalized trisubstituted alkenes. The direct formation of this species is unprecedented upon addition of molecular hydrogen and its catalytic potential has been hitherto barely explored.

20.
Biochim Biophys Acta ; 1829(12): 1266-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24185200

RESUMO

The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes.


Assuntos
Cromatina/genética , Leucemia Monocítica Aguda/genética , Receptores de Calcitriol/genética , Sequências Repetitivas de Ácido Nucleico/genética , Vitamina D/análogos & derivados , Acetilação , Western Blotting , Imunoprecipitação da Cromatina , Proteína do Grupo de Complementação E da Anemia de Fanconi/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Inibidores de Histona Desacetilases/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leucemia Monocítica Aguda/tratamento farmacológico , Receptores de Lipopolissacarídeos/genética , Subunidade p50 de NF-kappa B/genética , Proteína 2 Ligante de Morte Celular Programada 1/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Calcitriol/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Vitamina D/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA