RESUMO
The Arctic region is currently facing substantial environmental changes due to global warming. Melting glaciers cause reduced salinity environments in coastal Arctic habitats, which may be stressful for kelp beds. To investigate the responses of the kelp Saccharina latissima to the warming Arctic, we studied the transcriptomic changes of S. latissima from Kongsfjorden (Svalbard, Norway) over a 24-hour exposure to two salinities (Absolute Salinity [SA ] 20 and 30) after a 7-day pre-acclimation at three temperatures (0, 8 and 15°C). In addition, corresponding physiological data were assessed during an 11-days salinity/temperature experiment. Growth and maximal quantum yield for photosystem II fluorescence were positively affected by increased temperature during acclimation, whereas hyposalinity caused negative effects at the last day of treatment. In contrast, hyposalinity induced marked changes on the transcriptomic level. Compared to the control (8°C - SA 30), the 8°C - SA 20 exhibited the highest number of differentially expressed genes (DEGs), followed by the 0°C - SA 20. Comparisons indicate that S. latissima tends to convert its energy from primary metabolism (e.g. photosynthesis) to antioxidant activity under hyposaline stress. The increase in physiological performance at 15°C shows that S. latissima in the Arctic region can adjust and might even benefit from increased temperatures. However, in Arctic fjord environments its performance might become impaired by decreased salinity as a result of ice melting.
Assuntos
Aclimatação , Mudança Climática , Kelp/fisiologia , Phaeophyceae/fisiologia , Transcriptoma , Regiões Árticas , Fotossíntese , Complexo de Proteína do Fotossistema II/fisiologia , Salinidade , Estresse Fisiológico , SvalbardRESUMO
The Arctic Ocean is a unique ecosystem hosting a biodiversity that has not yet been elucidated in full detail. There is increasing evidence that there are more kelp species constricted to Arctic/sub-Arctic habitats hitherto not well investigated, such as Hedophyllum nigripes, which is morphologically very similar to cold-temperate Laminaria digitata. Hedophyllum nigripes was originally described as L. nigripes by Agardh from Spitsbergen but has often been misidentified as L. digitata in the European Arctic. We initiated a systematic algal survey along a depth gradient (0-7.5 m) in Kongsfjorden (Spitsbergen) in June and July 2015 and thereby confirmed a predominant presence of H. nigripes (73%). Hedophyllum nigripes is occurring between 0 and 7.5 m while L. digitata was most abundant at 2.5 m depth. Hedophyllum nigripes individuals were generally younger (2.3 vs. 3.6 years) and stipe and blade length shorter (31 vs. 54 cm and 76 vs. 96 cm, respectively) compared to L. digitata. A combination of molecular (COI-5P) and morpho-anatomical tools (presence of sori and mucilage ducts in the stipe) was used to differentiate specimens of H. nigripes and L. digitata. Both kelp species were indistinguishable in most cases by external blade and stipe morphology. The different blade shapes represented different ontogenetic stages rather than phenotypic plasticity. The presence of mucilage ducts in the stipe was correlated with H. nigripes and changed with depth from 17%, 36%, and 85% at 2.5, 5, and 7.5 m, respectively. In addition, all summer fertile specimens were L. digitata.
Assuntos
Laminaria , Phaeophyceae , Código de Barras de DNA Taxonômico , Ecossistema , SvalbardRESUMO
BACKGROUND: Kelps (Laminariales, Phaeophyceae) are brown macroalgae of utmost ecological, and increasingly economic, importance on temperate to polar rocky shores. Omics approaches in brown algae are still scarce and knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environments can benefit from the application of RNA-sequencing. Despite evidence of ecotypic differentiation, transcriptomic responses from distinct geographical locations have, to our knowledge, never been studied in the sugar kelp Saccharina latissima so far. RESULTS: In this study we investigated gene expression responses using RNA-sequencing of S. latissima from environments with contrasting temperature and salinity conditions - Roscoff, in temperate eastern Atlantic, and Spitsbergen in the Arctic. Juvenile sporophytes derived from uniparental stock cultures from both locations were pre-cultivated at 8 °C and SA 30. Sporophytes acclimated to 0 °C, 8 °C and 15 °C were exposed to a low salinity treatment (SA 20) for 24 h. Hyposalinity had a greater impact at the transcriptomic level than the temperature alone, and its effects were modulated by temperature. Namely, photosynthesis and pigment synthesis were extensively repressed by low salinity at low temperatures. Although some responses were shared among sporophytes from the different sites, marked differences were revealed by principal component analysis, differential expression and GO enrichment. The interaction between low temperature and low salinity drove the largest changes in gene expression in sporophytes from Roscoff while specimens from Spitsbergen required more metabolic adjustment at higher temperatures. Moreover, genes related to cell wall adjustment were differentially expressed between Spitsbergen and Roscoff control samples. CONCLUSIONS: Our study reveals interactive effects of temperature and salinity on transcriptomic profiles in S. latissima. Moreover, our data suggest that under identical culture conditions sporophytes from different locations diverge in their transcriptomic responses. This is probably connected to variations in temperature and salinity in their respective environment of origin. The current transcriptomic results support the plastic response pattern in sugar kelp which is a species with several reported ecotypes. Our data provide the baseline for a better understanding of the underlying processes of physiological plasticity and may help in the future to identify strains adapted to specific environments and its genetic control.
Assuntos
Kelp/genética , Estresse Fisiológico , Transcriptoma , Aclimatação , Perfilação da Expressão Gênica , Fotossíntese , Filogeografia , Salinidade , Estresse Fisiológico/genética , TemperaturaRESUMO
Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m-2 s-1). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions.
Assuntos
Dióxido de Carbono/metabolismo , Temperatura Alta , Phaeophyceae/metabolismo , Fotossíntese , Alga Marinha/metabolismo , Regiões Antárticas , Carbono/metabolismo , TranscriptomaRESUMO
Macroalgae of the order Laminariales (kelp) are important components of cold-temperate coastal ecosystems. Major factors influencing their distribution are light (including UV radiation) and temperature. Therefore, future global environmental changes potentially will impact their zonation, distribution patterns, and primary productivity. Many physiological studies were performed on UV radiation and temperature stress in kelp but combinatory effects have not been analyzed and so far no study is available on the molecular processes involved in acclimation to these stresses. Therefore, sporophytes of Saccharina latissima were exposed for 2 weeks to 12 combinations of photosynthetically active radiation (PAR), UV radiation and temperature. Subsequently, microarray hybridizations were performed to determine changes in gene expression patterns. Several effects on the transcriptome were observed after exposure experiments. The strongest effect of temperature on gene expression was observed at 2°C. Furthermore, UV radiation had stronger effects on gene expression than high PAR, and caused stronger induction genes correlated with categories such as photosynthetic components and vitamin B6 biosynthesis. Higher temperatures ameliorated the negative effects of UV radiation in S. latissima. Regulation of reactive oxygen species (ROS) scavenging seems to work in a compartment specific way. Gene expression profiles of ROS scavengers indicated a high amount of oxidative stress in response to the 2°C condition as well as to excessive light at 12°C. Interestingly, stress levels that did not lead to physiological alterations already caused by a transcriptomic response.
RESUMO
Light is a key environmental regulator in all photosynthetic organisms. Many studies focused on the physiologic response to changes in light availability of species from the Zygnematophyceae, but the impact of the absence of light and the molecular acclimation process on the other side have been poorly understood. Here we present transcriptomic analyses of Cosmarium crenatum from a polar habitat exposed to darkness. The algae were cultured in dark for one week; cell number and quantum yield of photosystem II (Fv/Fm) were monitored. Cell number was stable, but the Fv/Fm decreased in both groups, darkness-treated and control. Gene expression analysis revealed a strong repression of transcripts associated with photosynthesis, photorespiration and cell wall development. General carbohydrate and lipid metabolism were differentially regulated, but starch is shown to be the primary energy source in these conditions. Additionally, C. crenatum induced mRNA responsible for epigenetic modifications which may be a specific response to an adaption and acclimation to polar conditions. Our study sheds light on the molecular acclimation process to darkness and provides ecological implications for new perspectives in this specialized group of green algae.
Assuntos
Desmidiales/genética , Desmidiales/efeitos da radiação , Aclimatação/genética , Aclimatação/fisiologia , Aclimatação/efeitos da radiação , Carotenoides/metabolismo , Clorofila/metabolismo , Clima Frio , Escuridão , Desmidiales/fisiologia , Ecossistema , Metabolismo Energético/genética , Epigênese Genética , Expressão Gênica/efeitos da radiação , Perfilação da Expressão Gênica , Anotação de Sequência Molecular , Fotossíntese/genética , Fotossíntese/fisiologia , RNA de Algas/genética , RNA de Algas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Kelps, brown algae of the order Laminariales, dominate rocky shores and form huge kelp beds which provide habitat and nurseries for various marine organisms. Whereas the basic physiological and ecophysiological characteristics of kelps are well studied, the molecular processes underlying acclimation to different light and temperature conditions are still poorly understood. Therefore we investigated the molecular mechanisms underlying the physiological acclimation to light and temperature stress. Sporophytes of S. latissima were exposed to combinations of light intensities and temperatures, and microarray hybridizations were performed to determine changes in gene expression patterns. This first large-scale transcriptomic study of a kelp species shows that S. latissima responds to temperature and light stress with a multitude of transcriptional changes: up to 32% of genes showed an altered expression after the exposure experiments. High temperature had stronger effects on gene expression in S. latissima than low temperature, reflected by the higher number of temperature-responsive genes. We gained insights into underlying molecular processes of acclimation, which includes adjustment of the primary metabolism as well as induction of several ROS scavengers and a sophisticated regulation of Hsps. We show that S. latissima, as a cold adapted species, must make stronger efforts for acclimating to high than to low temperatures. The strongest response was caused by the combination of high temperatures with high light intensities, which proved most harmful for the alga.
Assuntos
Aclimatação/fisiologia , Laminaria/fisiologia , Estresse Fisiológico/fisiologia , Transcriptoma/fisiologia , Luz , Estimulação Luminosa , TemperaturaRESUMO
The delta(13)C(VPDB), delta(2)H(VSMOW) and delta(18)O(VSMOW) values of caffeine isolated from Arabica green coffee beans of different geographical origin have been determined by isotope ratio mass spectrometry (IRMS) using elemental analysis (EA) in the "combustion" (C) and "pyrolysis" (P) modes (EA-C/P-IRMS). In total, 45 coffee samples (20 from Central and South America, 16 from Africa, six from Indonesia, and three from Jamaica and Hawaii) were analysed, as well as three reference samples of synthetic caffeine. Validation was performed by excluding isotope discrimination in the course of sample preparation and determining linear dynamic ranges for EA-P-IRMS measurements. The values for caffeine from green coffee ranged from -25.1 to - 29.9 per thousand, -109 to -198 per thousand, and +2.0 to -12.0 per thousand for delta(13)C(VPDB), delta(2)H(VSMOW), and delta(18)O(VSMOW), respectively. Data evaluation by linear discrimination analysis (LDA) and by classification and regression tree (CART) analysis revealed the delta(18)O(VSMOW) values to be highly significant. Use of LDA on the delta(2)H(VSMOW) and delta(18)O(VSMOW) data from coffee of African and Central/South American provenance led to error rates of 5.7% and 7.7% for adaption and cross validation, respectively.