Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Eng Online ; 21(1): 33, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35614504

RESUMO

BACKGROUND: Machine learning, especially deep learning, is becoming more and more relevant in research and development in the medical domain. For all the supervised deep learning applications, data is the most critical factor in securing successful implementation and sustaining the progress of the machine learning model. Especially gastroenterological data, which often involves endoscopic videos, are cumbersome to annotate. Domain experts are needed to interpret and annotate the videos. To support those domain experts, we generated a framework. With this framework, instead of annotating every frame in the video sequence, experts are just performing key annotations at the beginning and the end of sequences with pathologies, e.g., visible polyps. Subsequently, non-expert annotators supported by machine learning add the missing annotations for the frames in-between. METHODS: In our framework, an expert reviews the video and annotates a few video frames to verify the object's annotations for the non-expert. In a second step, a non-expert has visual confirmation of the given object and can annotate all following and preceding frames with AI assistance. After the expert has finished, relevant frames will be selected and passed on to an AI model. This information allows the AI model to detect and mark the desired object on all following and preceding frames with an annotation. Therefore, the non-expert can adjust and modify the AI predictions and export the results, which can then be used to train the AI model. RESULTS: Using this framework, we were able to reduce workload of domain experts on average by a factor of 20 on our data. This is primarily due to the structure of the framework, which is designed to minimize the workload of the domain expert. Pairing this framework with a state-of-the-art semi-automated AI model enhances the annotation speed further. Through a prospective study with 10 participants, we show that semi-automated annotation using our tool doubles the annotation speed of non-expert annotators compared to a well-known state-of-the-art annotation tool. CONCLUSION: In summary, we introduce a framework for fast expert annotation for gastroenterologists, which reduces the workload of the domain expert considerably while maintaining a very high annotation quality. The framework incorporates a semi-automated annotation system utilizing trained object detection models. The software and framework are open-source.


Assuntos
Gastroenterologistas , Endoscopia , Humanos , Aprendizado de Máquina , Estudos Prospectivos
2.
Circ Cardiovasc Imaging ; 17(6): e015490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889216

RESUMO

Cardiovascular diseases remain a significant health burden, with imaging modalities like echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging playing a crucial role in diagnosis and prognosis. However, the inherent heterogeneity of these diseases poses challenges, necessitating advanced analytical methods like radiomics and artificial intelligence. Radiomics extracts quantitative features from medical images, capturing intricate patterns and subtle variations that may elude visual inspection. Artificial intelligence techniques, including deep learning, can analyze these features to generate knowledge, define novel imaging biomarkers, and support diagnostic decision-making and outcome prediction. Radiomics and artificial intelligence thus hold promise for significantly enhancing diagnostic and prognostic capabilities in cardiac imaging, paving the way for more personalized and effective patient care. This review explores the synergies between radiomics and artificial intelligence in cardiac imaging, following the radiomics workflow and introducing concepts from both domains. Potential clinical applications, challenges, and limitations are discussed, along with solutions to overcome them.


Assuntos
Inteligência Artificial , Humanos , Doenças Cardiovasculares/diagnóstico por imagem , Técnicas de Imagem Cardíaca , Interpretação de Imagem Assistida por Computador , Valor Preditivo dos Testes , Aprendizado Profundo , Prognóstico , Radiômica
3.
J Imaging ; 9(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36826945

RESUMO

Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is with a colonoscopy. During this procedure, the gastroenterologist searches for polyps. However, there is a potential risk of polyps being missed by the gastroenterologist. Automated detection of polyps helps to assist the gastroenterologist during a colonoscopy. There are already publications examining the problem of polyp detection in the literature. Nevertheless, most of these systems are only used in the research context and are not implemented for clinical application. Therefore, we introduce the first fully open-source automated polyp-detection system scoring best on current benchmark data and implementing it ready for clinical application. To create the polyp-detection system (ENDOMIND-Advanced), we combined our own collected data from different hospitals and practices in Germany with open-source datasets to create a dataset with over 500,000 annotated images. ENDOMIND-Advanced leverages a post-processing technique based on video detection to work in real-time with a stream of images. It is integrated into a prototype ready for application in clinical interventions. We achieve better performance compared to the best system in the literature and score a F1-score of 90.24% on the open-source CVC-VideoClinicDB benchmark.

4.
Stud Health Technol Inform ; 281: 484-485, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34042612

RESUMO

A semi-automatic tool for fast and accurate annotation of endoscopic videos utilizing trained object detection models is presented. A novel workflow is implemented and the preliminary results suggest that the annotation process is nearly twice as fast with our novel tool compared to the current state of the art.


Assuntos
Algoritmos , Gastroenterologistas , Endoscopia , Humanos , Aprendizado de Máquina , Fluxo de Trabalho
5.
Med Image Anal ; 70: 102002, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33657508

RESUMO

The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of deep learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of interest. EndoCV2020 challenges are designed to address research questions in these remits. In this paper, we present a summary of methods developed by the top 17 teams and provide an objective comparison of state-of-the-art methods and methods designed by the participants for two sub-challenges: i) artefact detection and segmentation (EAD2020), and ii) disease detection and segmentation (EDD2020). Multi-center, multi-organ, multi-class, and multi-modal clinical endoscopy datasets were compiled for both EAD2020 and EDD2020 sub-challenges. The out-of-sample generalization ability of detection algorithms was also evaluated. Whilst most teams focused on accuracy improvements, only a few methods hold credibility for clinical usability. The best performing teams provided solutions to tackle class imbalance, and variabilities in size, origin, modality and occurrences by exploring data augmentation, data fusion, and optimal class thresholding techniques.


Assuntos
Artefatos , Aprendizado Profundo , Algoritmos , Endoscopia Gastrointestinal , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA