RESUMO
Because of the worldwide growth in air traffic and its increasing effects on the atmospheric environment, it is necessary to quantify the direct aircraft emissions at all altitudes. In this study Fourier-transform infrared emission spectroscopy as a remote-sensing multi-component-analyzing technique for aircraft exhausts was investigated at ground level with a double pendulum interferometer and a line-by-line computer algorithm that was applied to a multilayer radiative transfer problem. Initial measurements were made to specify the spectral windows for traceable compounds, to test the sensitivity of the system, and to develop calibration and continuum handling procedures. To obtain information about the radial temperature and concentration profiles, we developed an algorithm for the analysis of an axial-symmetric multilayered plume by use of the CO(2) hot band at approximately 2400 cm(-1). Measurements were made with several in-service engines. Effects that were due to engine aging were detected but have to be analyzed systematically in the near future. Validation measurements were carried out with a conventional propane gas burner to compare the results with those obtained with standard measurement equipment. These measurements showed good agreement to within +/-20% for the CO and NO(x) results. The overall accuracy of the system was found to be +/-30%. The detection limits of the system for a typical engine plume (380 degrees C, ? = 50 cm) are below 0.1% for CO(2), ~0.7% for H(2)O, ~20 ppmv (parts per million by volume) for CO, and ~90 ppmv for NO.
RESUMO
Infrared spectrometry is a versatile basis to analyse greenhouse gases in the atmosphere. A multicomponent air pollution software (MAPS) was developed for retrieval of gas concentrations from radiation emission as well as absorption measurements. Concentrations of CO, CH4, N2O, and H2O as well as CO2, NO, NO2, NH3, SO2, HCl, HCHO, and the temperature of warm gases are determined on-line. The analyses of greenhouse gases in gaseous emission sources and in ambient air are performed by a mobile remote sensing system using the double-pendulum interferometer K300 of the Munich company Kayser-Threde. Passive radiation measurements are performed to retrieve CO, N2O, and H2O as well as CO2, NO, SO2, and HCl concentrations in smoke stack effluents of thermal power plants and municipal incinerators and CO and H2O as well as CO2 and NO in exhausts of aircraft engines. Open-path radiation measurements are used to determine greenhouse gas concentrations at different ambient air conditions and greenhouse gas emission rates of diffusive sources as garbage deposits, open coal mining, stock farming together with additional compounds (e.g. NH3), and from road traffic together with HCHO. Some results of measurements are shown. A future task is the verification of emission cadastres by these inspection measurements.
RESUMO
A new in situ instrument (LOPAP: long path absorption photometer) to measure gaseous nitrous acid (HONO) using wet chemical sampling and photometric detection has been developed. This instrument is aimed to overcome the known problems with current HONO measurement techniques and was designed to be a cheap, sensitive, compact, and continuouslyworking HONO monitorfor ambient air measurements in the troposphere or for measurements of higher concentrations e.g. in smog chambers, in exhaust gases, and in indoor environments. Laboratory investigations were carried outto characterize the instrument components with respect to collection efficiency, optimum dye formation, optimum detection, and interfering species. Detection limits ranging from approximately 3 to 50 pptV have been obtained with response times from 4 to 1.5 min, respectively, using different instrument parameters. The accuracy of the measurements is in the range between +/-(10-15)%. The validation of the instrument was performed in the laboratory for HONO concentrations of 3 and 30 ppbV using ion chromatography and with a DOAS (differential optical absorption spectrometer) instrument in a large outdoor smog chamber in the range from 0.1 to 20 ppbV. The deviations were well within the errors of the measurements; however, when comparing the data with the DOAS instrument systematically higher values were found with the LOPAP instrument.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Ácido Nitroso/análise , Controle de Custos , Monitoramento Ambiental/métodos , Desenho de Equipamento , Fotoquímica , Sensibilidade e EspecificidadeRESUMO
Fourier transform infrared spectroscopy is an efficient technique for the detection and quantification of molecules in gas mixtures. Measurement results from a mobile laboratory for ambient air analysis and for remote sensing of plume emission with the commercially available K300 spectrometer are reported. CO, CO(2), NO, NO(2), N(2)O, NH(3), CH(4), SO(2), H(2)O, HCl, and HCHO concentrations have been determined with good agreement with in situ results. The on-line multicomponent analysis software is based on line-by-line retrieval and least-squares fitting procedures, including the effects of multiple aerosol scattering and cloud and rain influences.
RESUMO
The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north. Aerosol particles also reduce solar radiation penetration to the surface, which can suppress precipitation. In the middle troposphere, Asian and to a lesser extent North American pollution is transported from the west. Additional Asian pollution from the east, transported from the monsoon in the upper troposphere, crosses the Mediterranean tropopause, which pollutes the lower stratosphere at middle latitudes.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monóxido de Carbono , Aerossóis , Ásia , Atmosfera , Clima , Europa (Continente) , Região do Mediterrâneo , América do Norte , Ozônio , Tempo (Meteorologia)RESUMO
Nonintrusive systems for the measurement on test rigs of aeroengine exhaust emissions required for engine certification (CO, NO(x), total unburned hydrocarbon, and smoke), together with CO(2) and temperature have been developed. These results have been compared with current certified intrusive measurements on an engine test. A spectroscopic database and data-analysis software has been developed to enable Fourier-transform Infrared measurement of concentrations of molecular species. CO(2), CO, and NO data showed agreement with intrusive techniques of approximately ?30%. A narrow-band spectroscopic device was used to measure CO(2) (with deviations of less than ?10% from the intrusive measurement), whereas laser-induced incandescence was used to measure particles. Future improvements to allow for the commercial use of the nonintrusive systems have been identified and the methods are applicable to any measurement of combustion emissions.