Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36639128

RESUMO

AIMS: In a field study, the effects of treatments of glyphosate-based herbicides (GBHs) in soil, alone and in combination with phosphate fertilizer, were examined on the performance and endophytic microbiota of garden strawberry. METHODS AND RESULTS: The root and leaf endophytic microbiota of garden strawberries grown in GBH-treated and untreated soil, with and without phosphate fertilizer, were analyzed. Next, bioinformatics analysis on the type of 5-enolpyruvylshikimate-3-phosphate synthase enzyme was conducted to assess the potential sensitivity of strawberry-associated bacteria and fungi to glyphosate, and to compare the results with field observations. GBH treatments altered the abundance and/or frequency of several operational taxonomic units (OTUs), especially those of root-associated fungi and bacteria. These changes were partly related to their sensitivity to glyphosate. Still, GBH treatments did not shape the overall community structure of strawberry microbiota or affect plant performance. Phosphate fertilizer increased the abundance of both glyphosate-resistant and glyphosate-sensitive bacterial OTUs, regardless of the GBH treatments. CONCLUSIONS: These findings demonstrate that although the overall community structure of strawberry endophytic microbes is not affected by GBH use, some individual taxa are.


Assuntos
Fragaria , Herbicidas , Microbiota , Herbicidas/farmacologia , Fertilizantes , Solo , Bactérias , Fungos/genética , Glifosato
2.
Environ Sci Technol ; 54(2): 1128-1135, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31860275

RESUMO

Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. An increasing number of studies have identified GBH residues in soil, water, and even human food that may expose nontarget organisms including wildlife, livestock, and humans to health risks. After a heated debate, the European Union allowed the use of GBHs to continue until 2022, after which their risks will be re-evaluated. Thus, decision makers urgently need scientific evidence on GBH residues and their possible effects on ecosystems. An important, yet neglected, aspect is to assess whether animals show preference or avoidance for GBH-contaminated food, as it can influence the likelihood of adverse health effects in wildlife. Here, using Japanese quails (Coturnix japonica) as our model, we show that females preferred GBH-contaminated food compared to control food. In females, exposure to GBHs caused delayed plumage development, and GBH residues were present in eggs, muscles, and liver. These results indicate that female preference is not adaptive, potentially exposing nontarget animals to greater risk of adverse effects of GBHs in natural and agricultural environments. Our results on tissue residues suggest that further studies are needed to understand the risks of such residues in the food chain.


Assuntos
Herbicidas , Animais , Coturnix , Ecossistema , Feminino , Glicina/análogos & derivados , Humanos , Glifosato
3.
Plant Mol Biol ; 90(6): 665-75, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26542393

RESUMO

The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.


Assuntos
Endófitos/fisiologia , Epichloe/fisiologia , Poaceae/microbiologia , Alcaloides/genética , Alcaloides/metabolismo , Evolução Biológica , Ecossistema , Epichloe/genética , Variação Genética , Filogenia , Poaceae/genética , Simbiose
4.
Pest Manag Sci ; 80(5): 2461-2470, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37467342

RESUMO

BACKGROUND: Cultivation of oilseed rape Brassica napus is pesticide-intensive, and alternative plant protection strategies are needed because both pesticide resistance and legislation narrow the range of effective chemical pesticides. The entomopathogenic fungus Beauveria bassiana is used as a biocontrol agent against various insect pests, but little is known about its endophytic potential and role in plant protection for oilseed rape. First, we studied whether B. bassiana can establish as an endophyte in oilseed rape, following seed inoculation. To evaluate the plant protection potential of endophytic B. bassiana on oilseed rape, we next examined its ability to induce plant metabolite biosynthesis. In another experiment, we tested the effect of seed inoculation on seedling survival in a semi-field experiment. RESULTS: Beauveria bassiana endophytically colonized oilseed rape following seed inoculation, and, in addition, natural colonization was also recorded. Maximum colonization rate was 40%, and generally increased with inoculation time. Seed inoculation did not affect the germination probability or growth of oilseed rape, but B. bassiana inoculated seeds germinated more slowly compared to controls. Endophytic colonization of B. bassiana induced biosynthesis of several flavonoids in oilseed rape leaves under controlled conditions. In the experiment conducted in semi-field conditions, inoculated seedlings had slightly higher mortality compared to control seedlings. CONCLUSION: Beauveria bassiana showed endophytic potential on oilseed rape via both natural colonization and seed inoculation, and it induced the biosynthesis of flavonoids. However, its use as an endophyte for plant protection against pests or pathogens for oilseed rape remains unclear. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Beauveria , Brassica napus , Praguicidas , Animais , Sementes , Insetos , Plantas , Endófitos , Plântula/microbiologia
5.
Sci Total Environ ; 946: 174198, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914330

RESUMO

The use of glyphosate-based herbicides (GBHs) to control weeds has increased exponentially in recent decades, and their residues and degradation products have been found in soils across the globe. GBH residues in soil have been shown to affect plant physiology and specialised metabolite biosynthesis, which, in turn, may impact plant resistance to biotic stressors. In a greenhouse study, we investigated the interactive effects between soil GBH residues and herbivory on the performance, phytohormone concentrations, phenolic compound concentrations and volatile organic compound (VOC) emissions of two woodland strawberry (Fragaria vesca) genotypes, which were classified as herbivore resistant and herbivore susceptible. Plants were subjected to herbivory by strawberry leaf beetle (Galerucella tenella) larvae, and to GBH residues by growing in soil collected from a field site with GBH treatments twice a year over the past eight years. Soil GBH residues reduced the belowground biomass of the susceptible genotype and the aboveground biomass of both woodland strawberry genotypes. Herbivory increased the belowground biomass of the resistant genotype and the root-shoot ratio of both genotypes. At the metabolite level, herbivory induced the emission of several VOCs. Jasmonic acid, abscisic acid and auxin concentrations were induced by herbivory, in contrast to salicylic acid, which was only induced by herbivory in combination with soil GBH residues in the resistant genotype. The concentrations of phenolic compounds were higher in the resistant genotype compared to the susceptible genotype and were induced by soil GBH residues in the resistant genotype. Our results indicate that soil GBH residues can differentially affect plant performance, phytohormone concentrations and phenolic compound concentrations under herbivore attack, in a genotype-dependent manner. Soil GBH altered plant responses to herbivory, which may impact plant resistance traits and species interactions. With ongoing agrochemical pollution, we need to consider plant cultivars with better resistance to polluted soils while maintaining plant resilience under challenging environmental conditions.

6.
J Chem Ecol ; 39(7): 962-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23797930

RESUMO

Defensive mutualism is widely accepted as providing the best framework for understanding how seed-transmitted, alkaloid producing fungal endophytes of grasses are maintained in many host populations. Here, we first briefly review current knowledge of bioactive alkaloids produced by systemic grass-endophytes. New findings suggest that chemotypic diversity of the endophyte-grass symbiotum is far more complex, involving multifaceted signaling and chemical cross-talk between endophyte and host cells (e.g., reactive oxygen species and antioxidants) or between plants, herbivores, and their natural enemies (e.g., volatile organic compounds, and salicylic acid and jasmonic acid pathways). Accumulating evidence also suggests that the tight relationship between the systemic endophyte and the host grass can lead to the loss of grass traits when the lost functions, such as plant defense to herbivores, are compensated for by an interactive endophytic fungal partner. Furthermore, chemotypic diversity of a symbiotum appears to depend on the endophyte and the host plant life histories, as well as on fungal and plant genotypes, abiotic and biotic environmental conditions, and their interactions. Thus, joint approaches of (bio)chemists, molecular biologists, plant physiologists, evolutionary biologists, and ecologists are urgently needed to fully understand the endophyte-grass symbiosis, its coevolutionary history, and ecological importance. We propose that endophyte-grass symbiosis provides an excellent model to study microbially mediated multirophic interactions from molecular mechanisms to ecology.


Assuntos
Alcaloides/biossíntese , Endófitos/metabolismo , Poaceae/microbiologia , Animais , Herbivoria , Insetos
7.
J Insect Physiol ; 146: 104503, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36935035

RESUMO

Glyphosate-based herbicides (GBHs) are the most frequently used herbicides worldwide. The use of GBHs is intended to tackle weeds, but GBHs have been shown to affect the life-history traits and antioxidant defense system of invertebrates found in agroecosystems. Thus far, the effects of GBHs on detoxification pathways among invertebrates have not been sufficiently investigated. We performed two different experiments-1) the direct pure glyphosate and GBH treatment, and 2) the indirect GBH experiment via food-to examine the possible effects of environmentally relevant GBH levels on the survival of the Colorado potato beetle (Leptinotarsa decemlineata) and the expression profiles of their detoxification genes. As candidate genes, we selected four cytochrome P450 (CYP), three glutathione-S-transferase (GST), and two acetylcholinesterase (AChE) genes that are known to be related to metabolic or target-site resistances in insects. We showed that environmentally relevant levels of pure glyphosate and GBH increased the probability for higher mortality in the Colorado potato beetle larvae in the direct experiment, but not in the indirect experiment. The GBHs or glyphosate did not affect the expression profiles of the studied CYP, GST, or AChE genes; however, we found a large family-level variation in expression profiles in both the direct and indirect treatment experiments. These results suggest that the genes selected for this study may not be the ones expressed in response to glyphosate or GBHs. It is also possible that the relatively short exposure time did not affect gene expression profiles, or the response may have already occurred at a shorter exposure time. Our results show that glyphosate products may affect the survival of the herbivorous insect already at lower levels, depending on their sensitivity to pesticides.


Assuntos
Besouros , Herbicidas , Animais , Herbicidas/toxicidade , Acetilcolinesterase/farmacologia , Transcriptoma , Besouros/genética , Glifosato
8.
J Fungi (Basel) ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675911

RESUMO

Plants harbor a large diversity of endophytic microbes. Meadow fescue (Festuca pratensis) is a cool-season grass known for its symbiotic relationship with the systemic and vertically-via seeds-transmitted fungal endophyte Epichloë uncinata, yet its effects on plant hormones and the microbial community is largely unexplored. Here, we sequenced the endophytic bacterial and fungal communities in the leaves and roots, analyzing phytohormone concentrations and plant performance parameters in Epichloë-symbiotic (E+) and Epichloë-free (E-) individuals of two meadow fescue cultivars. The endophytic microbial community differed between leaf and root tissues independent of Epichloë symbiosis, while the fungal community was different in the leaves of Epichloë-symbiotic and Epichloë-free plants in both cultivars. At the same time, Epichloë symbiosis decreased salicylic acid and increased auxin concentrations in leaves. Epichloë-symbiotic plants showed higher biomass and higher seed mass at the end of the season. Our results demonstrate that Epichloë symbiosis alters the leaf fungal microbiota, which coincides with changes in phytohormone concentrations, indicating that Epichloë endophytes affect both plant immune responses and other fungal endophytes. Whether the effect of Epichloë endophytes on other fungal endophytes is connected to changes in phytohormone concentrations remains to be elucidated.

9.
Trends Ecol Evol ; 38(1): 35-43, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243622

RESUMO

Non-target organisms are globally exposed to herbicides. While many herbicides - for example, glyphosate - were initially considered safe, increasing evidence demonstrates that they have profound effects on ecosystem functions via altered microbial communities. We provide a comprehensive framework on how herbicide residues may modulate ecosystem-level outcomes via alteration of microbiomes. The changes in soil microbiome are likely to influence key nutrient cycling and plant-soil processes. Herbicide-altered microbiome affects plant and animal performance and can influence trophic interactions such as herbivory and pollination. These changes are expected to lead to ecosystem and even evolutionary consequences for both microbes and hosts. Tackling the threats caused by agrochemicals to ecosystem functions and services requires tools and solutions based on a comprehensive understanding of microbe-mediated risks.


Assuntos
Herbicidas , Microbiota , Animais , Herbicidas/farmacologia , Herbicidas/química , Ecossistema , Plantas , Solo/química , Evolução Biológica
10.
Sci Total Environ ; 857(Pt 1): 159298, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36216073

RESUMO

Pollinator decline is a grave challenge worldwide. One of the main culprits for this decline is the widespread use of, and pollinators' chronic exposure to, agrochemicals. Here, we examined the effect of a field-realistic dose of the world's most commonly used pesticide, glyphosate-based herbicide (GBH), on bumblebee cognition. We experimentally tested bumblebee (Bombus terrestris) color and scent discrimination using acute GBH exposure, approximating a field-realistic dose from a day's foraging in a patch recently sprayed with GBH. In a 10-color discrimination experiment with five learning bouts, GBH treated bumblebees' learning rate fell to zero by third learning bout, whereas the control bees increased their performance in the last two bouts. In the memory test, the GBH treated bumblebees performed to near chance level, indicating that they had lost everything they had learned during the learning bouts, while the control bees were performing close to the level in their last learning bout. However, GBH did not affect bees' learning in a 2-color or 10-odor discrimination experiment, which suggests that the impact is limited to fine color learning and does not necessarily generalize to less specific tasks or other modalities. These results indicate that the widely used pesticide damages bumblebees' fine-color discrimination, which is essential to the pollinator's individual success and to colony fitness in complex foraging environments. Hence, our study suggests that acute sublethal exposure to GBH poses a greater threat to pollination-based ecosystem services than previously thought, and that tests for learning and memory should be integrated into pesticide risk assessment.


Assuntos
Herbicidas , Praguicidas , Abelhas , Animais , Neonicotinoides , Nitrocompostos , Herbicidas/toxicidade , Ecossistema , Glifosato
11.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37316439

RESUMO

Pollinator decline is one of the gravest challenges facing the world today, and the overuse of pesticides may be among its causes. Here, we studied whether glyphosate, the world's most widely used pesticide, affects the bumblebee gut microbiota. We exposed the bumblebee diet to glyphosate and a glyphosate-based herbicide and quantified the microbiota community shifts using 16S rRNA gene sequencing. Furthermore, we estimated the potential sensitivity of bee gut microbes to glyphosate based on previously reported presence of target enzyme. Glyphosate increased, whereas the glyphosate-based herbicide decreased gut microbiota diversity, indicating that negative effects are attributable to co-formulants. Both glyphosate and the glyphosate-based herbicide treatments significantly decreased the relative abundance of potentially glyphosate-sensitive bacterial species Snodgrasella alvi. However, the relative abundance of potentially glyphosate-sensitive Candidatus Schmidhempelia genera increased in bumblebees treated with glyphosate. Overall, 50% of the bacterial genera detected in the bee gut microbiota were classified as potentially resistant to glyphosate, while 36% were classified as sensitive. Healthy core microbiota have been shown to protect bees from parasite infections, change metabolism, and decrease mortality. Thus, the heavy use of glyphosate-based herbicides may have implications on bees and ecosystems.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Microbiota , Abelhas , Animais , Microbioma Gastrointestinal/genética , Herbicidas/farmacologia , RNA Ribossômico 16S/genética , Bactérias/genética , Glifosato
12.
J Chem Ecol ; 38(11): 1410-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23065107

RESUMO

The contents of individual phenolic compounds in the inner bark of silver birch (Betula pendula Roth) were analyzed by HPLC-DAD. Samples from 21 mature trees originating from three micropropagated parent trees were collected six times over a 1-year period. Significant seasonal variation in the quantities of ten compounds and four chromatographically unresolved compound pairs was found. A majority of the compounds also exhibited significant quantitative variation among birch clones. There were no qualitative differences associated with the season or among the clones. However, wounding of the bark induced the production of new types of bark phenolics: several ellagitannins were detected in the callus tissues of birch for the first time.


Assuntos
Betula/química , Fenóis/química , Betula/genética , Cromatografia Líquida de Alta Pressão , Variação Genética , Taninos Hidrolisáveis/química , Fenóis/análise , Casca de Planta/química , Casca de Planta/genética , Estações do Ano
13.
J Fungi (Basel) ; 9(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36675835

RESUMO

Vertically transmitted endophytic fungi can mitigate the negative effects of salinity encountered by their host grass and alter the competitive interactions between plant individuals. To experimentally study the interactive effects of the fungal endophyte Epichloë coenophiala on salt tolerance and intraspecific competition of its host plant, tall fescue Festuca arundinacea, we subjected 15 maternal lines of each Epichloë associated (E+) and Epichloë free (E-) tall fescue to salt treatment and competition in the greenhouse and common garden. Then, to explore variation in endophyte incidence in natural populations of tall fescue, we surveyed 23 natural populations occurring on or near the Baltic Sea coast in Aland islands in southwestern Finland for endophyte incidence, distance to shore, and competitive environment. Under salinity in the greenhouse, E- plants grew larger than E+ plants, but there was no size difference in the control treatment. E- plants grew taller and were more likely to flower than E+ plants when grown in benign conditions in the common garden but not with salinity or competition. The frequency of Epichloë incidence was high (90%) in natural populations, and it decreased towards the shore and risk of salt exposure. These results demonstrate a negative effect of Epichloë endophyte on the salt tolerance of its host. The high incidence of Epichloë in natural populations of tall fescue in the northern part of the species distribution range is likely due to factors other than salinity.

14.
Life (Basel) ; 12(5)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35629374

RESUMO

Glyphosate is the world's most widely used agrochemical. Its use in agriculture and gardening has been proclaimed safe because humans and other animals do not have the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). However, increasing numbers of studies have demonstrated risks to humans and animals because the shikimate metabolic pathway is present in many microbes. Here, we assess the potential effect of glyphosate on healthy human microbiota. Our results demonstrate that more than one-half of human microbiome are intrinsically sensitive to glyphosate. However, further empirical studies are needed to determine the effect of glyphosate on healthy human microbiota.

15.
Sci Rep ; 12(1): 21556, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513732

RESUMO

Increasing agricultural soil carbon sequestration without compromising the productivity of the land is a key challenge in global climate change mitigation. The carbon mitigation potential of grass-based agriculture is particularly high because grasslands represent 70% of the world's agricultural area. The root systems of grasses transfer large amounts of carbon to below-ground storage, and the carbon allocation to the roots is dependent on the grasses' photosynthesizing shoot biomass. In a common-garden experiment, Festuca pratensis was used as a model species to study how mowing and weed control practices of perennial cool-season fodder grasses affect total yield and root biomass. Additionally, grass-associated Epichloë endophytes and soil residual glyphosate were tested for their effect on the total yield and root biomass alone or in interaction with mowing. The results demonstrate that elevating the cutting height increases both cumulative yield and root biomass in F. pratensis. Endophyte symbiosis increased the total yield, while glyphosate-based herbicide residues in the soil decreased the root biomass, which indicates a reduction of soil bound carbon sequestration. The findings demonstrate that carbon sequestration and yield quantities on farmed grasslands may significantly be improved by optimizing strategies for the use of plant protection products and adjustment of mowing intensity.


Assuntos
Epichloe , Festuca , Lolium , Simbiose , Biomassa , Endófitos/metabolismo , Poaceae , Solo/química , Carbono/metabolismo
16.
Trends Plant Sci ; 27(3): 247-254, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34756535

RESUMO

Plant roots are abundantly colonized by dark septate endophytic (DSE) fungi in virtually all ecosystems. DSE fungi are functionally heterogeneous and their relationships with plants range from antagonistic to mutualistic. Here, we consider the role of by-product benefits in DSE and other root-fungal symbioses. We compared host investments against symbiont-derived benefits for the host plant and categorized these benefits as by-products or benefits requiring reciprocal investment from the host. By-product benefits may provide the variability required for the evolution of invested mutualisms between the host and symbiont. We suggest that DSE could be considered as 'a by-product mutualist transitional phase' in the evolution of cooperative mycorrhizal symbionts from saprotrophic fungi.


Assuntos
Endófitos , Micorrizas , Ecossistema , Raízes de Plantas/microbiologia , Plantas , Simbiose
17.
J Vis Exp ; (179)2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35068479

RESUMO

Glyphosate-based products (GBP) are the most common broad-spectrum herbicides worldwide. The target of glyphosate is the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) in the shikimate pathway, which is virtually universal in plants. The inhibition of the enzyme stops the production of three essential amino acids: phenylalanine, tyrosine, and tryptophan. EPSPS is also present in fungi and prokaryotes, such as archaea and bacteria; thus, the use of GBP may have an impact on the microbiome composition of soils, plants, herbivores, and secondary consumers. This article aims to present general guidelines to assess the effect of GBP on microbiomes from field experiments to bioinformatics analyses and provide a few testable hypotheses. Two field experiments are presented to test the GBP on non-target organisms. First, plant-associated microbes from 10 replicated control and GBP treatment plots simulating no-till cropping are sampled and analyzed. In the second experiment, samples from experimental plots fertilized by either poultry manure containing glyphosate residues or non-treated control manure were obtained. Bioinformatics analysis of EPSPS protein sequences is utilized to determine the potential sensitivity of microbes to glyphosate. The first step in estimating the effect of GBP on microbiomes is to determine their potential sensitivity to the target enzyme (EPSPS). Microbial sequences can be obtained either from public repositories or by means of PCR amplification. However, in the majority of field studies, microbiome composition has been determined based on universal DNA markers such as the 16S rRNA and the internal transcribed spacer (ITS). In these cases, sensitivity to glyphosate can only be estimated through a probabilistic analysis of EPSPS sequences using closely related species. The quantification of the potential sensitivity of organisms to glyphosate, based on the EPSPS enzyme, provides a robust approach for further experiments to study target and non-target resistant mechanisms.


Assuntos
Herbicidas , Microbiota , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Resistência a Herbicidas/genética , Herbicidas/farmacologia , RNA Ribossômico 16S , Glifosato
18.
Chemosphere ; 308(Pt 2): 136366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36113650

RESUMO

Conventional agricultural practices favoring the use of glyphosate-based herbicides (GBHs) increase the risk of GBH residues ending up in animal feed, feces, and, eventually, manure. The use of poultry manure as organic fertilizer in the circular food economy increases the unintentional introduction of GBH residues into horticultural and agricultural systems, with reportedly negative effects on the growth and reproduction of crop plants. To understand the potential lasting effects of exposure to GBH residues via organic manure fertilizers, we studied strawberry (Fragaria x vescana) plant performance, yield quantity, biochemistry, folivory, phytochemistry, and soil elemental composition the year after exposure to GBH. Although plants exposed to GBH residues via manure fertilizer were, on average, 23% smaller in the year of exposure, they were able to compensate for their growth during the following growing season. Interestingly, GBH residue exposure in the previous growing season led to a trend in altered plant size preferences of folivores during the following growing season. Furthermore, the plants that had been exposed to GBH residues in the previous growing season produced 20% heavier fruits with an altered composition of phenolic compounds compared to non-exposed plants. Our results indicate that GBHs introduced via manure fertilizer following circular economy practices in one year can have effects on perennial crop plants in the following year, although GBH residues in soil have largely vanished.


Assuntos
Herbicidas , Agroquímicos , Animais , Fertilizantes , Glicina/análogos & derivados , Esterco , Solo/química , Glifosato
19.
Trends Plant Sci ; 26(4): 312-323, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277187

RESUMO

Glyphosate has become the best-selling herbicide used in agriculture, horticulture, silviculture, and urban environments. It disrupts the shikimate metabolic pathway and thereby blocks the production of aromatic amino acids, which are the basis for several plant metabolites. Glyphosate residues are reported in soils from diverse environments, but the effects on plant physiology and consequences for species interactions are largely unknown. Here, we emphasize the complexity of these physiological processes, and argue that glyphosate residues modulate biosynthetic pathways, individually or interactively, which may affect interactions between plants and heterotrophic organisms. In this way, glyphosate residues can substantially interfere with plant resistance and the attraction of beneficial insects, both of which are essential elements in integrated pest management and healthy ecosystems.


Assuntos
Ecossistema , Herbicidas , Glicina/análogos & derivados , Plantas , Glifosato
20.
Environ Microbiol Rep ; 13(3): 309-316, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33530134

RESUMO

Glyphosate is the leading herbicide worldwide, but it also affects prokaryotes because it targets the central enzyme (5-enolpyruvylshikimate-3-phosphate, EPSP) of the shikimate pathway in the synthesis of the three essential aromatic amino acids in bacteria, fungi and plants. Our results reveal that bacteria may easily become resistant to glyphosate through changes in the 5-enolpyruvylshikimate-3-phosphate synthase active site. This indicates the importance of examining how glyphosate affects microbe-mediated ecosystem functions and human microbiomes.


Assuntos
3-Fosfoshikimato 1-Carboxiviniltransferase , Fosfatos , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Glicina/análogos & derivados , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA