Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 23(1): 74, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172714

RESUMO

BACKGROUND: CRISPR/Cas9 technology has become an important tool to generate targeted, highly specific genome mutations. The technology has great potential for crop improvement, as crop genomes are tailored to optimize specific traits over generations of breeding. Many crops have highly complex and polyploid genomes, particularly those used for bioenergy or bioproducts. The majority of tools currently available for designing and evaluating gRNAs for CRISPR experiments were developed based on mammalian genomes that do not share the characteristics or design criteria for crop genomes. RESULTS: We have developed an open source tool for genome-wide design and evaluation of gRNA sequences for CRISPR experiments, CROPSR. The genome-wide approach provides a significant decrease in the time required to design a CRISPR experiment, including validation through PCR, at the expense of an overhead compute time required once per genome, at the first run. To better cater to the needs of crop geneticists, restrictions imposed by other packages on design and evaluation of gRNA sequences were lifted. A new machine learning model was developed to provide scores while avoiding situations in which the currently available tools sometimes failed to provide guides for repetitive, A/T-rich genomic regions. We show that our gRNA scoring model provides a significant increase in prediction accuracy over existing tools, even in non-crop genomes. CONCLUSIONS: CROPSR provides the scientific community with new methods and a new workflow for performing CRISPR/Cas9 knockout experiments. CROPSR reduces the challenges of working in crops, and helps speed gRNA sequence design, evaluation and validation. We hope that the new software will accelerate discovery and reduce the number of failed experiments.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma , Melhoramento Vegetal , RNA Guia de Cinetoplastídeos/genética , Software
2.
BMC Bioinformatics ; 20(1): 557, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703611

RESUMO

BACKGROUND: Use of the Genome Analysis Toolkit (GATK) continues to be the standard practice in genomic variant calling in both research and the clinic. Recently the toolkit has been rapidly evolving. Significant computational performance improvements have been introduced in GATK3.8 through collaboration with Intel in 2017. The first release of GATK4 in early 2018 revealed rewrites in the code base, as the stepping stone toward a Spark implementation. As the software continues to be a moving target for optimal deployment in highly productive environments, we present a detailed analysis of these improvements, to help the community stay abreast with changes in performance. RESULTS: We re-evaluated multiple options, such as threading, parallel garbage collection, I/O options and data-level parallelization. Additionally, we considered the trade-offs of using GATK3.8 and GATK4. We found optimized parameter values that reduce the time of executing the best practices variant calling procedure by 29.3% for GATK3.8 and 16.9% for GATK4. Further speedups can be accomplished by splitting data for parallel analysis, resulting in run time of only a few hours on whole human genome sequenced to the depth of 20X, for both versions of GATK. Nonetheless, GATK4 is already much more cost-effective than GATK3.8. Thanks to significant rewrites of the algorithms, the same analysis can be run largely in a single-threaded fashion, allowing users to process multiple samples on the same CPU. CONCLUSIONS: In time-sensitive situations, when a patient has a critical or rapidly developing condition, it is useful to minimize the time to process a single sample. In such cases we recommend using GATK3.8 by splitting the sample into chunks and computing across multiple nodes. The resultant walltime will be nnn.4 hours at the cost of $41.60 on 4 c5.18xlarge instances of Amazon Cloud. For cost-effectiveness of routine analyses or for large population studies, it is useful to maximize the number of samples processed per unit time. Thus we recommend GATK4, running multiple samples on one node. The total walltime will be ∼34.1 hours on 40 samples, with 1.18 samples processed per hour at the cost of $2.60 per sample on c5.18xlarge instance of Amazon Cloud.


Assuntos
Genômica/métodos , Software , Algoritmos , Cromossomos Humanos/genética , Genoma Humano , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
3.
BMC Bioinformatics ; 20(1): 722, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847808

RESUMO

Following publication of the original article [1], the author explained that Table 2 is displayed incorrectly. The correct Table 2 is given below. The original article has been corrected.

4.
Sci Rep ; 11(1): 21680, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737383

RESUMO

The changing landscape of genomics research and clinical practice has created a need for computational pipelines capable of efficiently orchestrating complex analysis stages while handling large volumes of data across heterogeneous computational environments. Workflow Management Systems (WfMSs) are the software components employed to fill this gap. This work provides an approach and systematic evaluation of key features of popular bioinformatics WfMSs in use today: Nextflow, CWL, and WDL and some of their executors, along with Swift/T, a workflow manager commonly used in high-scale physics applications. We employed two use cases: a variant-calling genomic pipeline and a scalability-testing framework, where both were run locally, on an HPC cluster, and in the cloud. This allowed for evaluation of those four WfMSs in terms of language expressiveness, modularity, scalability, robustness, reproducibility, interoperability, ease of development, along with adoption and usage in research labs and healthcare settings. This article is trying to answer, which WfMS should be chosen for a given bioinformatics application regardless of analysis type?. The choice of a given WfMS is a function of both its intrinsic language and engine features. Within bioinformatics, where analysts are a mix of dry and wet lab scientists, the choice is also governed by collaborations and adoption within large consortia and technical support provided by the WfMS team/community. As the community and its needs continue to evolve along with computational infrastructure, WfMSs will also evolve, especially those with permissive licenses that allow commercial use. In much the same way as the dataflow paradigm and containerization are now well understood to be very useful in bioinformatics applications, we will continue to see innovations of tools and utilities for other purposes, like big data technologies, interoperability, and provenance.


Assuntos
Biologia Computacional/métodos , Software , Fluxo de Trabalho , Big Data , Genômica , Humanos , Reprodutibilidade dos Testes
5.
PLoS One ; 14(7): e0211608, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31287816

RESUMO

Bioinformatics research is frequently performed using complex workflows with multiple steps, fans, merges, and conditionals. This complexity makes management of the workflow difficult on a computer cluster, especially when running in parallel on large batches of data: hundreds or thousands of samples at a time. Scientific workflow management systems could help with that. Many are now being proposed, but is there yet the "best" workflow management system for bioinformatics? Such a system would need to satisfy numerous, sometimes conflicting requirements: from ease of use, to seamless deployment at peta- and exa-scale, and portability to the cloud. We evaluated Swift/T as a candidate for such role by implementing a primary genomic variant calling workflow in the Swift/T language, focusing on workflow management, performance and scalability issues that arise from production-grade big data genomic analyses. In the process we introduced novel features into the language, which are now part of its open repository. Additionally, we formalized a set of design criteria for quality, robust, maintainable workflows that must function at-scale in a production setting, such as a large genomic sequencing facility or a major hospital system. The use of Swift/T conveys two key advantages. (1) It operates transparently in multiple cluster scheduling environments (PBS Torque, SLURM, Cray aprun environment, etc.), thus a single workflow is trivially portable across numerous clusters. (2) The leaf functions of Swift/T permit developers to easily swap executables in and out of the workflow, which makes it easy to maintain and to request resources optimal for each stage of the pipeline. While Swift/T's data-level parallelism eliminates the need to code parallel analysis of multiple samples, it does make debugging more difficult, as is common for implicitly parallel code. Nonetheless, the language gives users a powerful and portable way to scale up analyses in many computing architectures. The code for our implementation of a variant calling workflow using Swift/T can be found on GitHub at https://github.com/ncsa/Swift-T-Variant-Calling, with full documentation provided at http://swift-t-variant-calling.readthedocs.io/en/latest/.


Assuntos
Biologia Computacional , Genômica , Software , Animais , Humanos , Fluxo de Trabalho
6.
Front Genet ; 10: 736, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481971

RESUMO

As reliable, efficient genome sequencing becomes ubiquitous, the need for similarly reliable and efficient variant calling becomes increasingly important. The Genome Analysis Toolkit (GATK), maintained by the Broad Institute, is currently the widely accepted standard for variant calling software. However, alternative solutions may provide faster variant calling without sacrificing accuracy. One such alternative is Sentieon DNASeq, a toolkit analogous to GATK but built on a highly optimized backend. We conducted an independent evaluation of the DNASeq single-sample variant calling pipeline in comparison to that of GATK. Our results support the near-identical accuracy of the two software packages, showcase optimal scalability and great speed from Sentieon, and describe computational performance considerations for the deployment of DNASeq.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA