Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Cell ; 184(3): 596-614.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33508232

RESUMO

Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias/imunologia , Linfócitos T/imunologia , Biomarcadores Tumorais/metabolismo , Antígenos CD8/metabolismo , Quimiocina CXCL13/metabolismo , Cromossomos Humanos Par 9/genética , Estudos de Coortes , Ciclina D1/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Amplificação de Genes , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Análise Multivariada , Mutação/genética , Neoplasias/patologia , Polimorfismo de Nucleotídeo Único/genética , Receptores CCR5/metabolismo , Linfócitos T/efeitos dos fármacos , Carga Tumoral/genética
2.
Cell ; 183(2): 363-376.e13, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007267

RESUMO

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.


Assuntos
Biomarcadores Farmacológicos/sangue , DNA Tumoral Circulante/análise , Inibidores de Checkpoint Imunológico/uso terapêutico , Adulto , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA Tumoral Circulante/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia/métodos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo
3.
Cell ; 183(2): 347-362.e24, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33064988

RESUMO

Neoantigens arise from mutations in cancer cells and are important targets of T cell-mediated anti-tumor immunity. Here, we report the first open-label, phase Ib clinical trial of a personalized neoantigen-based vaccine, NEO-PV-01, in combination with PD-1 blockade in patients with advanced melanoma, non-small cell lung cancer, or bladder cancer. This analysis of 82 patients demonstrated that the regimen was safe, with no treatment-related serious adverse events observed. De novo neoantigen-specific CD4+ and CD8+ T cell responses were observed post-vaccination in all of the patients. The vaccine-induced T cells had a cytotoxic phenotype and were capable of trafficking to the tumor and mediating cell killing. In addition, epitope spread to neoantigens not included in the vaccine was detected post-vaccination. These data support the safety and immunogenicity of this regimen in patients with advanced solid tumors (Clinicaltrials.gov: NCT02897765).


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Medicina de Precisão/métodos , Idoso , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Melanoma/tratamento farmacológico , Melanoma/imunologia , Pessoa de Meia-Idade , Mutação , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/imunologia
4.
Cell ; 183(3): 818-834.e13, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33038342

RESUMO

Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.


Assuntos
Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Neoplasias/imunologia , Alelos , Apresentação de Antígeno/imunologia , Estudos de Coortes , Humanos , Peptídeos/imunologia , Receptor de Morte Celular Programada 1 , Reprodutibilidade dos Testes
5.
Cell ; 178(4): 933-948.e14, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398344

RESUMO

Interferon-gamma (IFNG) augments immune function yet promotes T cell exhaustion through PDL1. How these opposing effects are integrated to impact immune checkpoint blockade (ICB) is unclear. We show that while inhibiting tumor IFNG signaling decreases interferon-stimulated genes (ISGs) in cancer cells, it increases ISGs in immune cells by enhancing IFNG produced by exhausted T cells (TEX). In tumors with favorable antigenicity, these TEX mediate rejection. In tumors with neoantigen or MHC-I loss, TEX instead utilize IFNG to drive maturation of innate immune cells, including a PD1+TRAIL+ ILC1 population. By disabling an inhibitory circuit impacting PD1 and TRAIL, blocking tumor IFNG signaling promotes innate immune killing. Thus, interferon signaling in cancer cells and immune cells oppose each other to establish a regulatory relationship that limits both adaptive and innate immune killing. In melanoma and lung cancer patients, perturbation of this relationship is associated with ICB response independent of tumor mutational burden.


Assuntos
Imunidade Adaptativa/imunologia , Imunidade Inata/imunologia , Interferon gama/genética , Interferon gama/metabolismo , Neoplasias Pulmonares/imunologia , Melanoma/imunologia , Transferência Adotiva , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/antagonistas & inibidores , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Técnicas de Inativação de Genes , Humanos , Interferon gama/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Melanoma/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Intervalo Livre de Progressão , RNA-Seq , Transfecção
6.
Immunity ; 56(1): 93-106.e6, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36574773

RESUMO

Improved identification of anti-tumor T cells is needed to advance cancer immunotherapies. CD39 expression is a promising surrogate of tumor-reactive CD8+ T cells. Here, we comprehensively profiled CD39 expression in human lung cancer. CD39 expression enriched for CD8+ T cells with features of exhaustion, tumor reactivity, and clonal expansion. Flow cytometry of 440 lung cancer biospecimens revealed weak association between CD39+ CD8+ T cells and tumoral features, such as programmed death-ligand 1 (PD-L1), tumor mutation burden, and driver mutations. Immune checkpoint blockade (ICB), but not cytotoxic chemotherapy, increased intratumoral CD39+ CD8+ T cells. Higher baseline frequency of CD39+ CD8+ T cells conferred improved clinical outcomes from ICB therapy. Furthermore, a gene signature of CD39+ CD8+ T cells predicted benefit from ICB, but not chemotherapy, in a phase III clinical trial of non-small cell lung cancer. These findings highlight CD39 as a proxy of tumor-reactive CD8+ T cells in human lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Linfócitos T CD8-Positivos , Imunoterapia
7.
Cell ; 171(6): 1284-1300.e21, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195073

RESUMO

Combining DNA-demethylating agents (DNA methyltransferase inhibitors [DNMTis]) with histone deacetylase inhibitors (HDACis) holds promise for enhancing cancer immune therapy. Herein, pharmacologic and isoform specificity of HDACis are investigated to guide their addition to a DNMTi, thus devising a new, low-dose, sequential regimen that imparts a robust anti-tumor effect for non-small-cell lung cancer (NSCLC). Using in-vitro-treated NSCLC cell lines, we elucidate an interferon α/ß-based transcriptional program with accompanying upregulation of antigen presentation machinery, mediated in part through double-stranded RNA (dsRNA) induction. This is accompanied by suppression of MYC signaling and an increase in the T cell chemoattractant CCL5. Use of this combination treatment schema in mouse models of NSCLC reverses tumor immune evasion and modulates T cell exhaustion state towards memory and effector T cell phenotypes. Key correlative science metrics emerge for an upcoming clinical trial, testing enhancement of immune checkpoint therapy for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/terapia , Quimioterapia Combinada , Neoplasias Pulmonares/terapia , Evasão Tumoral/efeitos dos fármacos , Animais , Apresentação de Antígeno/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Azacitidina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Camundongos , Linfócitos T/imunologia , Transcriptoma , Microambiente Tumoral
8.
Immunity ; 55(1): 56-64.e4, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34986342

RESUMO

We evaluated the impact of class I and class II human leukocyte antigen (HLA) genotypes, heterozygosity, and diversity on the efficacy of pembrolizumab. Seventeen pembrolizumab clinical trials across eight tumor types and one basket trial in patients with advanced solid tumors were included (n > 3,500 analyzed). Germline DNA was genotyped using a custom genotyping array. HLA diversity (measured by heterozygosity and evolutionary divergence) across class I loci was not associated with improved response to pembrolizumab, either within each tumor type evaluated or across all patients. Similarly, HLA heterozygosity at each class I and class II gene was not associated with response to pembrolizumab after accounting for the number of tests conducted. No conclusive association between HLA genotype and response to pembrolizumab was identified in this dataset. Germline HLA genotype or diversity alone is not an important independent determinant of response to pembrolizumab and should not be used for clinical decision-making in patients treated with pembrolizumab.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Genótipo , Mutação em Linhagem Germinativa/genética , Antígenos HLA/genética , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Fatores Etários , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/mortalidade , Polimorfismo Genético , Prognóstico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores Sexuais , Análise de Sobrevida , Resultado do Tratamento
9.
Nature ; 606(7912): 172-179, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35545680

RESUMO

Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3-6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical 'free fitness' framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.


Assuntos
Carcinogênese , Evolução Molecular , Neoplasias Pulmonares , Mutação , Carcinogênese/genética , Carcinogênese/imunologia , Conjuntos de Dados como Assunto , Genes p53 , Aptidão Genética , Genômica , Voluntários Saudáveis , Humanos , Imunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Mutação/genética , Mutação de Sentido Incorreto , Reprodutibilidade dos Testes
10.
Nature ; 596(7870): 126-132, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290408

RESUMO

PD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a 'barcode' to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein-Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.


Assuntos
Antígenos de Neoplasias/imunologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Regulação da Expressão Gênica , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Células Cultivadas , Humanos , Memória Imunológica , Neoplasias Pulmonares/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , RNA-Seq , Receptores de Interleucina-7/imunologia , Análise de Célula Única , Transcriptoma/genética , Microambiente Tumoral
11.
Immunity ; 47(2): 221-223, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28813655

RESUMO

Somatic mutations in cancer can be translated into peptides, termed neoantigens, which can be recognized by the immune system as "foreign" epitopes. Two recent studies in Nature (Sahin et al., 2017; Ott et al., 2017) examine the effects of neoantigen vaccines on patients with stage III or IV melanoma and demonstrate immunogenicity and intriguing clinical safety and efficacy data in phase I studies.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Melanoma/terapia , Neoplasias Cutâneas/terapia , Animais , Antígenos de Neoplasias/genética , Autoantígenos/genética , Ensaios Clínicos Fase I como Assunto , Humanos , Melanoma/imunologia , Melanoma/patologia , Mutação/genética , Metástase Neoplásica , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Vacinas de Subunidades Antigênicas
12.
Nature ; 567(7749): 479-485, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30894752

RESUMO

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.


Assuntos
Antígenos de Neoplasias/imunologia , Evolução Molecular , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Evasão Tumoral/imunologia , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Linfócitos do Interstício Tumoral/imunologia , Masculino , Prognóstico , Microambiente Tumoral/imunologia
13.
Nature ; 571(7764): 270-274, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207604

RESUMO

Tumour-specific CD8 T cell dysfunction is a differentiation state that is distinct from the functional effector or memory T cell states1-6. Here we identify the nuclear factor TOX as a crucial regulator of the differentiation of tumour-specific T (TST) cells. We show that TOX is highly expressed in dysfunctional TST cells from tumours and in exhausted T cells during chronic viral infection. Expression of TOX is driven by chronic T cell receptor stimulation and NFAT activation. Ectopic expression of TOX in effector T cells in vitro induced a transcriptional program associated with T cell exhaustion. Conversely, deletion of Tox in TST cells in tumours abrogated the exhaustion program: Tox-deleted TST cells did not upregulate genes for inhibitory receptors (such as Pdcd1, Entpd1, Havcr2, Cd244 and Tigit), the chromatin of which remained largely inaccessible, and retained high expression of transcription factors such as TCF-1. Despite their normal, 'non-exhausted' immunophenotype, Tox-deleted TST cells remained dysfunctional, which suggests that the regulation of expression of inhibitory receptors is uncoupled from the loss of effector function. Notably, although Tox-deleted CD8 T cells differentiated normally to effector and memory states in response to acute infection, Tox-deleted TST cells failed to persist in tumours. We hypothesize that the TOX-induced exhaustion program serves to prevent the overstimulation of T cells and activation-induced cell death in settings of chronic antigen stimulation such as cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Homeodomínio/genética , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Neoplasias/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Transcrição Gênica
14.
Oncologist ; 28(11): 978-985, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37589215

RESUMO

BACKGROUND: Direct KRASG12C inhibitors are approved for patients with non-small cell lung cancers (NSCLC) in the second-line setting. The standard-of-care for initial treatment remains immune checkpoint inhibitors, commonly in combination with platinum-doublet chemotherapy (chemo-immunotherapy). Outcomes to chemo-immunotherapy in this subgroup have not been well described. Our goal was to define the clinical outcomes to chemo-immunotherapy in patients with NSCLC with KRASG12C mutations. PATIENTS AND METHODS: Through next-generation sequencing, we identified patients with advanced NSCLC with KRAS mutations treated with chemo-immunotherapy at 2 institutions. The primary objective was to determine outcomes and determinants of response to first-line chemo-immunotherapy among patients with KRASG12C by evaluating objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). We assessed the impact of coalterations in STK11/KEAP1 on outcomes. As an exploratory objective, we compared the outcomes to chemo-immunotherapy in KRASG12C versus non-G12C groups. RESULTS: One hundred and thirty eight patients with KRASG12C treated with first-line chemo-immunotherapy were included. ORR was 41% (95% confidence interval (CI), 32-41), median PFS was 6.8 months (95%CI, 5.5-10), and median OS was 15 months (95%CI, 11-28). In a multivariable model for PFS, older age (P = .042), squamous cell histology (P = .008), poor ECOG performance status (PS) (P < .001), and comutations in KEAP1 and STK11 (KEAP1MUT/STK11MUT) (P = .015) were associated with worse PFS. In a multivariable model for OS, poor ECOG PS (P = .004) and KEAP1MUT/STK11MUT (P = .009) were associated with worse OS. Patients with KRASG12C (N = 138) experienced similar outcomes to chemo-immunotherapy compared to patients with non-KRASG12C (N = 185) for both PFS (P = .2) and OS (P = .053). CONCLUSIONS: We define the outcomes to first-line chemo-immunotherapy in patients with KRASG12C, which provides a real-world benchmark for clinical trial design involving patients with KRASG12C mutations. Outcomes are poor in patients with specific molecular coalterations, highlighting the need to develop more effective frontline therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch , Platina , Fator 2 Relacionado a NF-E2 , Proteínas Serina-Treonina Quinases
15.
Nature ; 551(7681): 517-520, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29132144

RESUMO

Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.


Assuntos
Antígenos de Neoplasias/imunologia , Imunoterapia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Melanoma/imunologia , Melanoma/terapia , Modelos Imunológicos , Apresentação de Antígeno , Antígenos de Neoplasias/genética , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Pontos de Checagem do Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/imunologia , Estudos de Coortes , Evolução Molecular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Ativação Linfocitária , Melanoma/genética , Melanoma/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Análise de Sobrevida , Linfócitos T/imunologia
16.
Nature ; 545(7655): 452-456, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514453

RESUMO

Tumour-specific CD8 T cells in solid tumours are dysfunctional, allowing tumours to progress. The epigenetic regulation of T cell dysfunction and therapeutic reprogrammability (for example, to immune checkpoint blockade) is not well understood. Here we show that T cells in mouse tumours differentiate through two discrete chromatin states: a plastic dysfunctional state from which T cells can be rescued, and a fixed dysfunctional state in which the cells are resistant to reprogramming. We identified surface markers associated with each chromatin state that distinguished reprogrammable from non-reprogrammable PD1hi dysfunctional T cells within heterogeneous T cell populations from tumours in mice; these surface markers were also expressed on human PD1hi tumour-infiltrating CD8 T cells. Our study has important implications for cancer immunotherapy as we define key transcription factors and epigenetic programs underlying T cell dysfunction and surface markers that predict therapeutic reprogrammability.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Cromatina/genética , Cromatina/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Masculino , Camundongos , Neoplasias/metabolismo , Neoplasias/terapia , Fatores de Transcrição/metabolismo
18.
Br J Cancer ; 126(6): 889-898, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34963703

RESUMO

BACKGROUND: While 2-4% of lung cancers possess alterations in BRAF, little is known about the immune responsiveness of these tumours. METHODS: Clinical and genomic data were collected from 5945 patients with lung cancers whose tumours underwent next-generation sequencing between 2015 and 2018. Patients were followed through 2020. RESULTS: In total, 127 patients with metastatic BRAF-altered lung cancers were identified: 29 tumours had Class I mutations, 59 had Class II/III alterations, and 39 had variants of unknown significance (VUS). Tumour mutation burden was higher in Class II/III than Class I-altered tumours (8.8 mutations/Mb versus 4.9, P < 0.001), but this difference was diminished when stratified by smoking status. The overall response rate to immune checkpoint inhibitors (ICI) was 9% in Class I-altered tumours and 26% in Class II/III (P = 0.25), with median time on treatment of 1.9 months in both groups. Among patients with Class I-III-altered tumours, 36-month HR for death in those who ever versus never received ICI was 1.82 (1.17-6.11). Nine patients were on ICI for >2 years (two with Class I mutations, two with Class II/III alterations, and five with VUS). CONCLUSIONS: A subset of patients with BRAF-altered lung cancers achieved durable disease control on ICI. However, collectively no significant clinical benefit was seen.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Proteínas Proto-Oncogênicas B-raf , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/imunologia
19.
N Engl J Med ; 381(21): 2020-2031, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31562796

RESUMO

BACKGROUND: In an early-phase study involving patients with advanced non-small-cell lung cancer (NSCLC), the response rate was better with nivolumab plus ipilimumab than with nivolumab monotherapy, particularly among patients with tumors that expressed programmed death ligand 1 (PD-L1). Data are needed to assess the long-term benefit of nivolumab plus ipilimumab in patients with NSCLC. METHODS: In this open-label, phase 3 trial, we randomly assigned patients with stage IV or recurrent NSCLC and a PD-L1 expression level of 1% or more in a 1:1:1 ratio to receive nivolumab plus ipilimumab, nivolumab alone, or chemotherapy. The patients who had a PD-L1 expression level of less than 1% were randomly assigned in a 1:1:1 ratio to receive nivolumab plus ipilimumab, nivolumab plus chemotherapy, or chemotherapy alone. All the patients had received no previous chemotherapy. The primary end point reported here was overall survival with nivolumab plus ipilimumab as compared with chemotherapy in patients with a PD-L1 expression level of 1% or more. RESULTS: Among the patients with a PD-L1 expression level of 1% or more, the median duration of overall survival was 17.1 months (95% confidence interval [CI], 15.0 to 20.1) with nivolumab plus ipilimumab and 14.9 months (95% CI, 12.7 to 16.7) with chemotherapy (P = 0.007), with 2-year overall survival rates of 40.0% and 32.8%, respectively. The median duration of response was 23.2 months with nivolumab plus ipilimumab and 6.2 months with chemotherapy. The overall survival benefit was also observed in patients with a PD-L1 expression level of less than 1%, with a median duration of 17.2 months (95% CI, 12.8 to 22.0) with nivolumab plus ipilimumab and 12.2 months (95% CI, 9.2 to 14.3) with chemotherapy. Among all the patients in the trial, the median duration of overall survival was 17.1 months (95% CI, 15.2 to 19.9) with nivolumab plus ipilimumab and 13.9 months (95% CI, 12.2 to 15.1) with chemotherapy. The percentage of patients with grade 3 or 4 treatment-related adverse events in the overall population was 32.8% with nivolumab plus ipilimumab and 36.0% with chemotherapy. CONCLUSIONS: First-line treatment with nivolumab plus ipilimumab resulted in a longer duration of overall survival than did chemotherapy in patients with NSCLC, independent of the PD-L1 expression level. No new safety concerns emerged with longer follow-up. (Funded by Bristol-Myers Squibb and Ono Pharmaceutical; CheckMate 227 ClinicalTrials.gov number, NCT02477826.).


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ipilimumab/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nivolumabe/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Imunológicos/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Humanos , Ipilimumab/efeitos adversos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Nivolumabe/efeitos adversos , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA