Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
5.
Nature ; 508(7495): 249-53, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24572353

RESUMO

Epistasis is the phenomenon whereby one polymorphism's effect on a trait depends on other polymorphisms present in the genome. The extent to which epistasis influences complex traits and contributes to their variation is a fundamental question in evolution and human genetics. Although often demonstrated in artificial gene manipulation studies in model organisms, and some examples have been reported in other species, few examples exist for epistasis among natural polymorphisms in human traits. Its absence from empirical findings may simply be due to low incidence in the genetic control of complex traits, but an alternative view is that it has previously been too technically challenging to detect owing to statistical and computational issues. Here we show, using advanced computation and a gene expression study design, that many instances of epistasis are found between common single nucleotide polymorphisms (SNPs). In a cohort of 846 individuals with 7,339 gene expression levels measured in peripheral blood, we found 501 significant pairwise interactions between common SNPs influencing the expression of 238 genes (P < 2.91 × 10(-16)). Replication of these interactions in two independent data sets showed both concordance of direction of epistatic effects (P = 5.56 × 10(-31)) and enrichment of interaction P values, with 30 being significant at a conservative threshold of P < 9.98 × 10(-5). Forty-four of the genetic interactions are located within 5 megabases of regions of known physical chromosome interactions (P = 1.8 × 10(-10)). Epistatic networks of three SNPs or more influence the expression levels of 129 genes, whereby one cis-acting SNP is modulated by several trans-acting SNPs. For example, MBNL1 is influenced by an additive effect at rs13069559, which itself is masked by trans-SNPs on 14 different chromosomes, with nearly identical genotype-phenotype maps for each cis-trans interaction. This study presents the first evidence, to our knowledge, for many instances of segregating common polymorphisms interacting to influence human traits.


Assuntos
Epistasia Genética/genética , Regulação da Expressão Gênica/genética , Transcrição Gênica/genética , Estudos de Coortes , Europa (Continente)/etnologia , Feminino , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Desequilíbrio de Ligação , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Reprodutibilidade dos Testes
6.
Twin Res Hum Genet ; 23(2): 109-111, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32383421

RESUMO

Nick Martin is a pioneer in recognizing the need for large sample size to study the complex, heterogeneous and polygenic disorders of common mental disorders. In the predigital era, questionnaires were mailed to thousands of twin pairs around Australia. Always quick to adopt new technology, Nick's studies progressed to phone interviews and then online. Moreover, Nick was early to recognize the value of collecting DNA samples. As genotyping technologies improved over the years, these twin and family cohorts were used for linkage, candidate gene and genome-wide association studies. These cohorts have underpinned many analyses to disentangle the complex web of genetic and lifestyle factors associated with mental health. With characteristic foresight, Nick is chief investigator of our Australian Genetics of Depression Study, which has recruited 16,000 people with self-reported depression (plus DNA samples) over a time frame of a few months - analyses are currently ongoing. The mantra of sample size, sample size, sample size has guided Nick's research over the last 30 years and continues to do so.


Assuntos
Depressão/genética , Transtornos Mentais/genética , Herança Multifatorial/genética , Austrália/epidemiologia , Depressão/história , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , História do Século XX , História do Século XXI , Humanos , Transtornos Mentais/história , Gêmeos/genética , Gêmeos/história
7.
Aust N Z J Psychiatry ; 54(1): 46-56, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995080

RESUMO

OBJECTIVE: The current international trend is to create large datasets with existing data and/or deposit newly collected data into repositories accessible to the scientific community. These practices lead to more efficient data sharing, better detection of small effects, modelling of confounders, establishment of sample generalizability and identification of differences between any given disorders. In Australia, to facilitate such data-sharing and collaborative opportunities, the Neurobiology in Youth Mental Health Partnership was created. This initiative brings together specialised researchers from around Australia to work towards a better understanding of the cross-diagnostic neurobiology of youth mental health and the translation of this knowledge into clinical practice. One of the mandates of the partnership was to develop a protocol for harmonised prospective collection of data across research centres in the field of youth mental health in order to create large datasets. METHODS: Four key research modalities were identified: clinical assessments, brain imaging, neurocognitive assessment and collection of blood samples. This paper presents the consensus set of assessments/data collection that has been selected by experts in each domain. CONCLUSION: The use of this core set of data will facilitate the pooling of psychopathological and neurobiological data into large datasets allowing researchers to tackle important questions requiring very large numbers. The aspiration of this transdiagnostic approach is a better understanding of the mechanisms underlying mental illnesses.


Assuntos
Big Data , Coleta de Dados , Disseminação de Informação , Transtornos Mentais/diagnóstico , Adolescente , Adulto , Criança , Humanos , Colaboração Intersetorial , Adulto Jovem
8.
Hum Mol Genet ; 25(24): 5332-5338, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798101

RESUMO

The mitochondrial and nuclear genomes coordinate and co-evolve in eukaryotes in order to adapt to environmental changes. Variation in the mitochondrial genome is capable of affecting expression of genes on the nuclear genome. Sex-specific mitochondrial genetic control of gene expression has been demonstrated in Drosophila melanogaster, where males were found to drive most of the total variation in gene expression. This has potential implications for male-related health and disease resulting from variation in mtDNA solely inherited from the mother. We used a family-based study comprised of 47,323 gene expression probes and 78 mitochondrial SNPs (mtSNPs) from n = 846 individuals to examine the extent of mitochondrial genetic control of gene expression in humans. This identified 15 significant probe-mtSNP associations (P<10-8) corresponding to 5 unique genes on the mitochondrial and nuclear genomes, with three of these genes corresponding to mitochondrial genetic control of gene expression in the nuclear genome. The associated mtSNPs for three genes (one cis and two trans associations) were replicated (P < 0.05) in an independent dataset of n = 452 unrelated individuals. There was no evidence for sexual dimorphic gene expression in any of these five probes. Sex-specific effects were examined by applying our analysis to males and females separately and testing for differences in effect size. The MEST gene was identified as having the most significantly different effect sizes across the sexes (P≈10-7). MEST was similarly expressed in males and females with the G allele; however, males with the C allele are highly expressed for MEST, while females show no expression of the gene. This study provides evidence for the mitochondrial genetic control of expression of several genes in humans, with little evidence found for sex-specific effects.


Assuntos
DNA Mitocondrial/genética , Regulação da Expressão Gênica/genética , Mitocôndrias/genética , Biossíntese de Proteínas/genética , Alelos , Animais , Núcleo Celular/genética , Cromossomos/genética , Drosophila melanogaster/genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Caracteres Sexuais
9.
Am J Hum Genet ; 97(1): 75-85, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26119815

RESUMO

We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction.


Assuntos
Estatura/genética , Metilação de DNA/genética , Obesidade/genética , Fenótipo , Adolescente , Adulto , Análise de Variância , Índice de Massa Corporal , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Pessoa de Meia-Idade , Modelos Genéticos , Países Baixos , Escócia
10.
J Neurol Neurosurg Psychiatry ; 89(10): 1016-1023, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29706605

RESUMO

OBJECTIVE: To determine the prevalence of hypermetabolism, relative to body composition, in amyotrophic lateral sclerosis (ALS) and its relationship with clinical features of disease and survival. METHODS: Fifty-eight patients with clinically definite or probable ALS as defined by El Escorial criteria, and 58 age and sex-matched control participants underwent assessment of energy expenditure. Our primary outcome was the prevalence of hypermetabolism in cases and controls. Longitudinal changes in clinical parameters between hypermetabolic and normometabolic patients with ALS were determined for up to 12 months following metabolic assessment. Survival was monitored over a 30-month period following metabolic assessment. RESULTS: Hypermetabolism was more prevalent in patients with ALS than controls (41% vs 12%, adjusted OR=5.4; p<0.01). Change in body weight, body mass index and fat mass (%) was similar between normometabolic and hypermetabolic patients with ALS. Mean lower motor neuron score (SD) was greater in hypermetabolic patients when compared with normometabolic patients (4 (0.3) vs 3 (0.7); p=0.04). In the 12 months following metabolic assessment, there was a greater change in Revised ALS Functional Rating Scale score in hypermetabolic patients when compared with normometabolic patients (-0.68 points/month vs -0.39 points/month; p=0.01). Hypermetabolism was inversely associated with survival. Overall, hypermetabolism increased the risk of death during follow-up to 220% (HR 3.2, 95% CI 1.1 to 9.4, p=0.03). CONCLUSIONS AND RELEVANCE: Hypermetabolic patients with ALS have a greater level of lower motor neuron involvement, faster rate of functional decline and shorter survival. The metabolic index could be important for informing prognosis in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Composição Corporal/fisiologia , Índice de Massa Corporal , Metabolismo Energético/fisiologia , Idoso , Esclerose Lateral Amiotrófica/mortalidade , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida
11.
Hum Mol Genet ; 24(5): 1478-92, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25378557

RESUMO

Common variants in the hepatocyte nuclear factor 1 homeobox B (HNF1B) gene are associated with the risk of Type II diabetes and multiple cancers. Evidence to date indicates that cancer risk may be mediated via genetic or epigenetic effects on HNF1B gene expression. We previously found single-nucleotide polymorphisms (SNPs) at the HNF1B locus to be associated with endometrial cancer, and now report extensive fine-mapping and in silico and laboratory analyses of this locus. Analysis of 1184 genotyped and imputed SNPs in 6608 Caucasian cases and 37 925 controls, and 895 Asian cases and 1968 controls, revealed the best signal of association for SNP rs11263763 (P = 8.4 × 10(-14), odds ratio = 0.86, 95% confidence interval = 0.82-0.89), located within HNF1B intron 1. Haplotype analysis and conditional analyses provide no evidence of further independent endometrial cancer risk variants at this locus. SNP rs11263763 genotype was associated with HNF1B mRNA expression but not with HNF1B methylation in endometrial tumor samples from The Cancer Genome Atlas. Genetic analyses prioritized rs11263763 and four other SNPs in high-to-moderate linkage disequilibrium as the most likely causal SNPs. Three of these SNPs map to the extended HNF1B promoter based on chromatin marks extending from the minimal promoter region. Reporter assays demonstrated that this extended region reduces activity in combination with the minimal HNF1B promoter, and that the minor alleles of rs11263763 or rs8064454 are associated with decreased HNF1B promoter activity. Our findings provide evidence for a single signal associated with endometrial cancer risk at the HNF1B locus, and that risk is likely mediated via altered HNF1B gene expression.


Assuntos
Mapeamento Cromossômico , Neoplasias do Endométrio/genética , Loci Gênicos , Fator 1-beta Nuclear de Hepatócito/genética , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Biologia Computacional , Bases de Dados Genéticas , Epigênese Genética , Feminino , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Fator 1-beta Nuclear de Hepatócito/metabolismo , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Risco , População Branca/genética
12.
Genome Res ; 24(11): 1725-33, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25249537

RESUMO

Epigenetic mechanisms such as DNA methylation (DNAm) are essential for regulation of gene expression. DNAm is dynamic, influenced by both environmental and genetic factors. Epigenetic drift is the divergence of the epigenome as a function of age due to stochastic changes in methylation. Here we show that epigenetic drift may be constrained at many CpGs across the human genome by DNA sequence variation and by lifetime environmental exposures. We estimate repeatability of DNAm at 234,811 autosomal CpGs in whole blood using longitudinal data (2-3 repeated measurements) on 478 older people from two Scottish birth cohorts--the Lothian Birth Cohorts of 1921 and 1936. Median age was 79 yr and 70 yr, and the follow-up period was ∼10 yr and ∼6 yr, respectively. We compare this to methylation heritability estimated in the Brisbane Systems Genomics Study, a cross-sectional study of 117 families (offspring median age 13 yr; parent median age 46 yr). CpG repeatability in older people was highly correlated (0.68) with heritability estimated in younger people. Highly heritable sites had strong underlying cis-genetic effects. Thirty-seven and 1687 autosomal CpGs were associated with smoking and sex, respectively. Both sets were strongly enriched for high repeatability. Sex-associated CpGs were also strongly enriched for high heritability. Our results show that a large number of CpGs across the genome, as a result of environmental and/or genetic constraints, have stable DNAm variation over the human lifetime. Moreover, at a number of CpGs, most variation in the population is due to genetic factors, despite some sites being highly modifiable by the environment.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Genética Populacional/métodos , Genoma Humano/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Criança , Estudos de Coortes , Estudos Transversais , Saúde da Família , Feminino , Interação Gene-Ambiente , Humanos , Padrões de Herança/genética , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Fatores Sexuais , Fumar , Adulto Jovem
13.
Hum Reprod ; 32(4): 893-904, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28177073

RESUMO

Study question: Do genetic effects regulate gene expression in human endometrium? Summary answer: This study demonstrated strong genetic effects on endometrial gene expression and some evidence for genetic regulation of gene expression in a menstrual cycle stage-specific manner. What is known already: Genetic effects on expression levels for many genes are tissue specific. Endometrial gene expression varies across menstrual cycle stages and between individuals, but there are limited data on genetic control of expression in endometrium. Study design, size, duration: We analysed genome-wide genotype and gene expression data to map cis expression quantitative trait loci (eQTL) in endometrium. Participants/materials, setting, methods: We recruited 123 women of European ancestry. DNA samples from blood were genotyped on Illumina HumanCoreExome chips. Total RNA was extracted from endometrial tissues. Whole-transcriptome profiles were characterized using Illumina Human HT-12 v4.0 Expression Beadchips. We performed eQTL mapping with ~8 000 000 genotyped and imputed single nucleotide polymorphisms (SNPs) and 12 329 genes. Main results and the role of chance: We identified a total of 18 595 cis SNP-probe associations at a study-wide level of significance (P < 1 × 10-7), which correspond to independent eQTLs for 198 unique genes. The eQTLs with the largest effect in endometrial tissue were rs4902335 for CHURC1 (P = 1.05 × 10-32) and rs147253019 for ZP3 (P = 8.22 × 10-30). We further performed a context-specific eQTL analysis to investigate if genetic effects on gene expression regulation act in a menstrual cycle-specific manner. Interestingly, five cis-eQTLs were identified with a significant stage-by-genotype interaction. The strongest stage interaction was the eQTL for C10ORF33 (PYROXD2) with SNP rs2296438 (P = 2.0 × 10-4), where we observe a 2-fold difference in the average expression levels of heterozygous samples depending on the stage of the menstrual cycle. Large scale data: The summary eQTL results are publicly available to browse or download. Limitations, reasons for caution: A limitation of the present study was the relatively modest sample size. It was not powered to identify trans-eQTLs and larger sample sizes will also be needed to provide better power to detect cis-eQTLs and cycle stage-specific effects, given the substantial changes in expression across the menstrual cycle for many genes. Wider implications of the findings: Identification of endometrial eQTLs provides a platform for better understanding genetic effects on endometriosis risk and other endometrial-related pathologies. Study funding/competing interest(s): Funding for this work was provided by NHMRC Project Grants GNT1026033, GNT1049472, GNT1046880, GNT1050208, GNT1105321 and APP1083405. There are no competing interests.


Assuntos
Endométrio/metabolismo , Regulação da Expressão Gênica , Ciclo Menstrual/genética , Transcriptoma , Mapeamento Cromossômico , Feminino , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
14.
Alcohol Clin Exp Res ; 41(5): 911-928, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28226201

RESUMO

BACKGROUND: Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified. METHODS: We conducted a genomewide association study in 706 related AD cases and 1,748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-response behaviors. We tested 1 primate-specific gene for expression differences in case/control postmortem brain tissue. RESULTS: We detected significant association in COL6A3 and suggestive association in 2 previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance (AFT). Klf12 expression correlated with locomotor activation following EtOH injection in mice. Loss of function of the RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens (NAc). CONCLUSIONS: We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975. Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders.


Assuntos
Alcoolismo/genética , Etanol/administração & dosagem , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Modelos Animais , Adulto , Alcoolismo/diagnóstico , Alcoolismo/epidemiologia , Animais , Caenorhabditis elegans , Estudos de Casos e Controles , Drosophila , Feminino , Loci Gênicos/efeitos dos fármacos , Predisposição Genética para Doença/epidemiologia , Humanos , Irlanda/epidemiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Ratos
15.
BMC Genomics ; 17: 278, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048375

RESUMO

BACKGROUND: Expression QTLs and epigenetic marks are often employed to provide an insight into the possible biological mechanisms behind GWAS hits. A substantial proportion of the variation in gene expression and DNA methylation is known to be under genetic control. We address the proportion of genetic control that is shared between these two genomic features. RESULTS: An exhaustive search for pairwise phenotypic correlations between gene expression and DNA methylation in samples from human blood (n = 610) was performed. Of the 5 × 10(9) possible pairwise tests, 0.36 % passed Bonferroni corrected p-value cutoff of 9.9 × 10(-12). We determined that the correlation structure between probe pairs was largely due to blood cell type specificity of the expression and methylation probes. Upon adjustment of the expression and methylation values for observed blood cellular composition (n = 422), the number of probe pairs which survived Bonferroni correction reduced by more than 5400 fold. Of the 614 correlated probe pairs located on the same chromosome, 75 % share at least one methylation and expression QTL at nominal 10(-5) p-value cutoff. Those probe pairs are located within 1Mbp window from each other and have a mean of absolute value of genetic correlation equal to 0.69, further demonstrating the high degree of shared genetic control. CONCLUSIONS: Overall, this study demonstrates notable genetic covariance between DNA methylation and gene expression and reaffirms the importance of correcting for cell-counts in studies on non-homogeneous tissues.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Locos de Características Quantitativas
16.
Am J Hum Genet ; 93(5): 865-75, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183453

RESUMO

Evidence that complex traits are highly polygenic has been presented by population-based genome-wide association studies (GWASs) through the identification of many significant variants, as well as by family-based de novo sequencing studies indicating that several traits have a large mutational target size. Here, using a third study design, we show results consistent with extreme polygenicity for body mass index (BMI) and height. On a sample of 20,240 siblings (from 9,570 nuclear families), we used a within-family method to obtain narrow-sense heritability estimates of 0.42 (SE = 0.17, p = 0.01) and 0.69 (SE = 0.14, p = 6 × 10(-)(7)) for BMI and height, respectively, after adjusting for covariates. The genomic inflation factors from locus-specific linkage analysis were 1.69 (SE = 0.21, p = 0.04) for BMI and 2.18 (SE = 0.21, p = 2 × 10(-10)) for height. This inflation is free of confounding and congruent with polygenicity, consistent with observations of ever-increasing genomic-inflation factors from GWASs with large sample sizes, implying that those signals are due to true genetic signals across the genome rather than population stratification. We also demonstrate that the distribution of the observed test statistics is consistent with both rare and common variants underlying a polygenic architecture and that previous reports of linkage signals in complex traits are probably a consequence of polygenic architecture rather than the segregation of variants with large effects. The convergent empirical evidence from GWASs, de novo studies, and within-family segregation implies that family-based sequencing studies for complex traits require very large sample sizes because the effects of causal variants are small on average.


Assuntos
Estatura/genética , Índice de Massa Corporal , Genética Populacional , Irmãos , Alelos , Feminino , Ligação Genética , Genoma Humano , Genótipo , Humanos , Masculino , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Característica Quantitativa Herdável
17.
Behav Genet ; 46(2): 170-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26362575

RESUMO

Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion.


Assuntos
Extroversão Psicológica , Estudo de Associação Genômica Ampla , Personalidade/genética , Estudos de Coortes , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
18.
PLoS Genet ; 9(5): e1003502, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23696747

RESUMO

There is increasing evidence that heritable variation in gene expression underlies genetic variation in susceptibility to disease. Therefore, a comprehensive understanding of the similarity between relatives for transcript variation is warranted--in particular, dissection of phenotypic variation into additive and non-additive genetic factors and shared environmental effects. We conducted a gene expression study in blood samples of 862 individuals from 312 nuclear families containing MZ or DZ twin pairs using both pedigree and genotype information. From a pedigree analysis we show that the vast majority of genetic variation across 17,994 probes is additive, although non-additive genetic variation is identified for 960 transcripts. For 180 of the 960 transcripts with non-additive genetic variation, we identify expression quantitative trait loci (eQTL) with dominance effects in a sample of 339 unrelated individuals and replicate 31% of these associations in an independent sample of 139 unrelated individuals. Over-dominance was detected and replicated for a trans association between rs12313805 and ETV6, located 4MB apart on chromosome 12. Surprisingly, only 17 probes exhibit significant levels of common environmental effects, suggesting that environmental and lifestyle factors common to a family do not affect expression variation for most transcripts, at least those measured in blood. Consistent with the genetic architecture of common diseases, gene expression is predominantly additive, but a minority of transcripts display non-additive effects.


Assuntos
Expressão Gênica , Estudos de Associação Genética , Locos de Características Quantitativas/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Idoso , Mapeamento Cromossômico , Feminino , Predisposição Genética para Doença , Genética Populacional , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único
19.
Hum Genet ; 134(8): 823-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25963972

RESUMO

In the International Visible Trait Genetics (VisiGen) Consortium, we investigated the genetics of human skin color by combining a series of genome-wide association studies (GWAS) in a total of 17,262 Europeans with functional follow-up of discovered loci. Our GWAS provide the first genome-wide significant evidence for chromosome 20q11.22 harboring the ASIP gene being explicitly associated with skin color in Europeans. In addition, genomic loci at 5p13.2 (SLC45A2), 6p25.3 (IRF4), 15q13.1 (HERC2/OCA2), and 16q24.3 (MC1R) were confirmed to be involved in skin coloration in Europeans. In follow-up gene expression and regulation studies of 22 genes in 20q11.22, we highlighted two novel genes EIF2S2 and GSS, serving as competing functional candidates in this region and providing future research lines. A genetically inferred skin color score obtained from the 9 top-associated SNPs from 9 genes in 940 worldwide samples (HGDP-CEPH) showed a clear gradual pattern in Western Eurasians similar to the distribution of physical skin color, suggesting the used 9 SNPs as suitable markers for DNA prediction of skin color in Europeans and neighboring populations, relevant in future forensic and anthropological investigations.


Assuntos
Cromossomos Humanos/genética , Loci Gênicos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , População Branca/genética , Proteína Agouti Sinalizadora/genética , Antígenos de Neoplasias/genética , Feminino , Seguimentos , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fatores Reguladores de Interferon/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Ubiquitina-Proteína Ligases , Reino Unido
20.
Genome Res ; 22(3): 456-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22183966

RESUMO

The degree to which the level of genetic variation for gene expression is shared across multiple tissues has important implications for research investigating the role of expression on the etiology of complex human traits and diseases. In the last few years, several studies have been published reporting the extent of overlap in expression quantitative trait loci (eQTL) identified in multiple tissues or cell types. Although these studies provide important information on the regulatory control of genes across tissues, their limited power means that they can typically only explain a small proportion of genetic variation for gene expression. Here, using expression data from monozygotic twins (MZ), we investigate the genetic control of gene expression in lymphoblastoid cell lines (LCL) and whole blood (WB). We estimate the genetic correlation that represents the combined effects of all causal loci across the whole genome and is a measure of the level of common genetic control of gene expression between the two RNA sources. Our results show that, when averaged across the genome, mean levels of genetic correlation for gene expression in LCL and WB samples are close to zero. We support our results with evidence from gene expression in an independent sample of LCL, T-cells, and fibroblasts. In addition, we provide evidence that housekeeping genes, which maintain basic cellular functions, are more likely to have high genetic correlations between the RNA sources than non-housekeeping genes, implying a relationship between the transcript function and the degree to which a gene has tissue-specific genetic regulatory control.


Assuntos
Células Sanguíneas/metabolismo , Regulação da Expressão Gênica , Células Progenitoras Linfoides/metabolismo , Locos de Características Quantitativas , Feminino , Perfilação da Expressão Gênica , Genes Essenciais , Estudo de Associação Genômica Ampla , Humanos , Masculino , Especificidade de Órgãos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores Sexuais , Gêmeos Monozigóticos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA