Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Cell ; 169(2): 273-285.e17, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28388411

RESUMO

How phospholipids are trafficked between the bacterial inner and outer membranes through the hydrophilic space of the periplasm is not known. We report that members of the mammalian cell entry (MCE) protein family form hexameric assemblies with a central channel capable of mediating lipid transport. The E. coli MCE protein, MlaD, forms a ring associated with an ABC transporter complex in the inner membrane. A soluble lipid-binding protein, MlaC, ferries lipids between MlaD and an outer membrane protein complex. In contrast, EM structures of two other E. coli MCE proteins show that YebT forms an elongated tube consisting of seven stacked MCE rings, and PqiB adopts a syringe-like architecture. Both YebT and PqiB create channels of sufficient length to span the periplasmic space. This work reveals diverse architectures of highly conserved protein-based channels implicated in the transport of lipids between the membranes of bacteria and some eukaryotic organelles.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Membrana Celular/química , Cristalografia por Raios X , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química
2.
Cell ; 163(2): 445-55, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26451488

RESUMO

RNA-directed DNA methylation in Arabidopsis thaliana is driven by the plant-specific RNA Polymerase IV (Pol IV). It has been assumed that a Pol IV transcript can give rise to multiple 24-nt small interfering RNAs (siRNAs) that target DNA methylation. Here, we demonstrate that Pol IV-dependent RNAs (P4RNAs) from wild-type Arabidopsis are surprisingly short in length (30 to 40 nt) and mirror 24-nt siRNAs in distribution, abundance, strand bias, and 5'-adenine preference. P4RNAs exhibit transcription start sites similar to Pol II products and are featured with 5'-monophosphates and 3'-misincorporated nucleotides. The 3'-misincorporation preferentially occurs at methylated cytosines on the template DNA strand, suggesting a co-transcriptional feedback to siRNA biogenesis by DNA methylation to reinforce silencing locally. These results highlight an unusual mechanism of Pol IV transcription and suggest a "one precursor, one siRNA" model for the biogenesis of 24-nt siRNAs in Arabidopsis.


Assuntos
Arabidopsis/metabolismo , RNA de Plantas/genética , RNA Interferente Pequeno/genética , Adenina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Biológicos , Sítio de Iniciação de Transcrição
3.
Annu Rev Genet ; 55: 23-43, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34310193

RESUMO

Sex, as well as meiotic recombination between homologous chromosomes, is nearly ubiquitous among eukaryotes. In those species that use it, recombination is important for chromosome segregation during gamete production, and thus for fertility. Strikingly, although in most species only one crossover event per chromosome is required to ensure proper segregation, recombination rates vary considerably above this minimum and show variation within and among species. However, whether this variation in recombination is adaptive or neutral and what might shape it remain unclear. Empirical studies and theory support the idea that recombination is generally beneficial but can also have costs. Here, we review variation in genome-wide recombination rates, explore what might cause this, and discuss what is known about its mechanistic basis. We end by discussing the environmental sensitivity of meiosis and recombination rates, how these features may relate to adaptation, and their implications for a broader understanding of recombination rate evolution.


Assuntos
Recombinação Homóloga , Meiose , Segregação de Cromossomos , Cromossomos , Genoma/genética , Recombinação Homóloga/genética , Meiose/genética
4.
Nature ; 618(7965): 557-565, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198485

RESUMO

Centromeres are critical for cell division, loading CENH3 or CENPA histone variant nucleosomes, directing kinetochore formation and allowing chromosome segregation1,2. Despite their conserved function, centromere size and structure are diverse across species. To understand this centromere paradox3,4, it is necessary to know how centromeric diversity is generated and whether it reflects ancient trans-species variation or, instead, rapid post-speciation divergence. To address these questions, we assembled 346 centromeres from 66 Arabidopsis thaliana and 2 Arabidopsis lyrata accessions, which exhibited a remarkable degree of intra- and inter-species diversity. A. thaliana centromere repeat arrays are embedded in linkage blocks, despite ongoing internal satellite turnover, consistent with roles for unidirectional gene conversion or unequal crossover between sister chromatids in sequence diversification. Additionally, centrophilic ATHILA transposons have recently invaded the satellite arrays. To counter ATHILA invasion, chromosome-specific bursts of satellite homogenization generate higher-order repeats and purge transposons, in line with cycles of repeat evolution. Centromeric sequence changes are even more extreme in comparison between A. thaliana and A. lyrata. Together, our findings identify rapid cycles of transposon invasion and purging through satellite homogenization, which drive centromere evolution and ultimately contribute to speciation.


Assuntos
Arabidopsis , Centrômero , Elementos de DNA Transponíveis , DNA Satélite , Evolução Molecular , Arabidopsis/genética , Arabidopsis/metabolismo , Centrômero/genética , Centrômero/metabolismo , Elementos de DNA Transponíveis/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , DNA Satélite/genética , Conversão Gênica
5.
Genome Res ; 34(2): 161-178, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485193

RESUMO

Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.


Assuntos
Centrômero , Retroelementos , Animais , Retroelementos/genética , Centrômero/genética , Cinetocoros , Plantas/genética , Sequências de Repetição em Tandem
6.
EMBO J ; 41(14): e109958, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670129

RESUMO

The number of meiotic crossovers is tightly controlled and most depend on pro-crossover ZMM proteins, such as the E3 ligase HEI10. Despite the importance of HEI10 dosage for crossover formation, how HEI10 transcription is controlled remains unexplored. In a forward genetic screen using a fluorescent crossover reporter in Arabidopsis thaliana, we identify heat shock factor binding protein (HSBP) as a repressor of HEI10 transcription and crossover numbers. Using genome-wide crossover mapping and cytogenetics, we show that hsbp mutations or meiotic HSBP knockdowns increase ZMM-dependent crossovers toward the telomeres, mirroring the effects of HEI10 overexpression. Through RNA sequencing, DNA methylome, and chromatin immunoprecipitation analysis, we reveal that HSBP is required to repress HEI10 transcription by binding with heat shock factors (HSFs) at the HEI10 promoter and maintaining DNA methylation over the HEI10 5' untranslated region. Our findings provide insights into how the temperature response regulator HSBP restricts meiotic HEI10 transcription and crossover number by attenuating HSF activity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Troca Genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Meiose/genética , Ubiquitina-Proteína Ligases/metabolismo
7.
PLoS Genet ; 19(4): e1010737, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37099600

RESUMO

Diphtheria is a respiratory disease caused by Corynebacterium diphtheriae. While the toxin-based vaccine has helped control outbreaks of the disease since the mid-20th century there has been an increase in cases in recent years, including systemic infections caused by non-toxigenic C. diphtheriae strains. Here we describe the first study of gene essentiality in C. diphtheriae, providing the most-dense Transposon Directed Insertion Sequencing (TraDIS) library in the phylum Actinobacteriota. This high-density library has allowed the identification of conserved genes across the genus and phylum with essential function and enabled the elucidation of essential domains within the resulting proteins including those involved in cell envelope biogenesis. Validation of these data through protein mass spectrometry identified hypothetical and uncharacterized proteins in the proteome which are also represented in the vaccine. These data are an important benchmark and useful resource for the Corynebacterium, Mycobacterium, Nocardia and Rhodococcus research community. It enables the identification of novel antimicrobial and vaccine targets and provides a basis for future studies of Actinobacterial biology.


Assuntos
Corynebacterium diphtheriae , Difteria , Humanos , Corynebacterium diphtheriae/genética , Multiômica , Difteria/epidemiologia , Difteria/microbiologia , Surtos de Doenças , Biblioteca Gênica
8.
PLoS Genet ; 18(7): e1010298, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35857772

RESUMO

During meiosis, DNA double-strand breaks (DSBs) occur throughout the genome, a subset of which are repaired to form reciprocal crossovers between chromosomes. Crossovers are essential to ensure balanced chromosome segregation and to create new combinations of genetic variation. Meiotic DSBs are formed by a topoisomerase-VI-like complex, containing catalytic (e.g. SPO11) proteins and auxiliary (e.g. PRD3) proteins. Meiotic DSBs are formed in chromatin loops tethered to a linear chromosome axis, but the interrelationship between DSB-promoting factors and the axis is not fully understood. Here, we study the localisation of SPO11-1 and PRD3 during meiosis, and investigate their respective functions in relation to the chromosome axis. Using immunocytogenetics, we observed that the localisation of SPO11-1 overlaps relatively weakly with the chromosome axis and RAD51, a marker of meiotic DSBs, and that SPO11-1 recruitment to chromatin is genetically independent of the axis. In contrast, PRD3 localisation correlates more strongly with RAD51 and the chromosome axis. This indicates that PRD3 likely forms a functional link between SPO11-1 and the chromosome axis to promote meiotic DSB formation. We also uncovered a new function of SPO11-1 in the nucleation of the synaptonemal complex protein ZYP1. We demonstrate that chromosome co-alignment associated with ZYP1 deposition can occur in the absence of DSBs, and is dependent on SPO11-1, but not PRD3. Lastly, we show that the progression of meiosis is influenced by the presence of aberrant chromosomal connections, but not by the absence of DSBs or synapsis. Altogether, our study provides mechanistic insights into the control of meiotic DSB formation and reveals diverse functional interactions between SPO11-1, PRD3 and the chromosome axis.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Pareamento Cromossômico/genética , Cromossomos/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Meiose/genética
9.
Genes Dev ; 31(3): 306-317, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28223312

RESUMO

During meiosis, homologous chromosomes undergo crossover recombination, which creates genetic diversity and balances homolog segregation. Despite these critical functions, crossover frequency varies extensively within and between species. Although natural crossover recombination modifier loci have been detected in plants, causal genes have remained elusive. Using natural Arabidopsis thaliana accessions, we identified two major recombination quantitative trait loci (rQTLs) that explain 56.9% of crossover variation in Col×Ler F2 populations. We mapped rQTL1 to semidominant polymorphisms in HEI10, which encodes a conserved ubiquitin E3 ligase that regulates crossovers. Null hei10 mutants are haploinsufficient, and, using genome-wide mapping and immunocytology, we show that transformation of additional HEI10 copies is sufficient to more than double euchromatic crossovers. However, heterochromatic centromeres remained recombination-suppressed. The strongest HEI10-mediated crossover increases occur in subtelomeric euchromatin, which is reminiscent of sex differences in Arabidopsis recombination. Our work reveals that HEI10 naturally limits Arabidopsis crossovers and has the potential to influence the response to selection.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Troca Genética , Dosagem de Genes , Meiose/genética , Sequência de Aminoácidos , Locos de Características Quantitativas , Recombinação Genética , Homologia de Sequência de Aminoácidos
10.
J Infect Dis ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38235716

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a frequent pathogen isolated from bacterial bloodstream infection (BSI) and is associated with high mortality. To survive in the blood, P aeruginosa must resist the bactericidal action of complement (ie, serum killing). Antibodies usually promote serum killing through the classical complement pathway; however, "cloaking antibodies" (cAbs) have been described, which paradoxically protect bacteria from serum killing. The relevance of cAbs in P aeruginosa BSI is unknown. METHODS: Serum and P aeruginosa were collected from a cohort of 100 patients with BSI. Isolates were tested for sensitivity to healthy control serum (HCS). cAb prevalence was determined in sera. Patient sera were mixed with HCS to determine if killing of the matched isolate was inhibited. RESULTS: Overall, 36 patients had elevated titers of cAbs, and 34 isolates were sensitive to HCS killing. Fifteen patients had cAbs and HCS-sensitive isolates; of these patients, 14 had serum that protected their matched bacteria from HCS killing. Patients with cAbs were less likely to be neutropenic or have comorbidities. CONCLUSIONS: cAbs are prevalent in patients with P aeruginosa BSI and allow survival of otherwise serum-sensitive bacteria in the bloodstream. Generation of cAbs may be a risk factor for the development of BSI.

11.
EMBO J ; 39(21): e104858, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32935357

RESUMO

During meiosis, DNA double-strand breaks undergo interhomolog repair to yield crossovers between homologous chromosomes. To investigate how interhomolog sequence polymorphism affects crossovers, we sequenced multiple recombinant populations of the model plant Arabidopsis thaliana. Crossovers were elevated in the diverse pericentromeric regions, showing a local preference for polymorphic regions. We provide evidence that crossover association with elevated diversity is mediated via the Class I crossover formation pathway, although very high levels of diversity suppress crossovers. Interhomolog polymorphism causes mismatches in recombining molecules, which can be detected by MutS homolog (MSH) mismatch repair protein heterodimers. Therefore, we mapped crossovers in a msh2 mutant, defective in mismatch recognition, using multiple hybrid backgrounds. Although total crossover numbers were unchanged in msh2 mutants, recombination was remodelled from the diverse pericentromeres towards the less-polymorphic sub-telomeric regions. Juxtaposition of megabase heterozygous and homozygous regions causes crossover remodelling towards the heterozygous regions in wild type Arabidopsis, but not in msh2 mutants. Immunostaining showed that MSH2 protein accumulates on meiotic chromosomes during prophase I, consistent with MSH2 regulating meiotic recombination. Our results reveal a pro-crossover role for MSH2 in regions of higher sequence diversity in A. thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Polimorfismo Genético , Ciclo Celular , Cromatina , Cromossomos , Troca Genética , Reparo do DNA , Replicação do DNA , Recombinação Homóloga , Meiose , Mutagênese , Polimorfismo de Nucleotídeo Único
12.
Genome Res ; 31(9): 1614-1628, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426514

RESUMO

The hexaploid bread wheat genome comprises over 16 gigabases of sequence across 21 chromosomes. Meiotic crossovers are highly polarized along the chromosomes, with elevation in the gene-dense distal regions and suppression in the Gypsy retrotransposon-dense centromere-proximal regions. We profiled the genomic landscapes of the meiotic recombinase DMC1 and the chromosome axis protein ASY1 in wheat and investigated their relationships with crossovers, chromatin state, and genetic diversity. DMC1 and ASY1 chromatin immunoprecipitation followed by sequencing (ChIP-seq) revealed strong co-enrichment in the distal, crossover-active regions of the wheat chromosomes. Distal ChIP-seq enrichment is consistent with spatiotemporally biased cytological immunolocalization of DMC1 and ASY1 close to the telomeres during meiotic prophase I. DMC1 and ASY1 ChIP-seq peaks show significant overlap with genes and transposable elements in the Mariner and Mutator superfamilies. However, DMC1 and ASY1 ChIP-seq peaks were detected along the length of each chromosome, including in low-crossover regions. At the fine scale, crossover elevation at DMC1 and ASY1 peaks and genes correlates with enrichment of the Polycomb histone modification H3K27me3. This indicates a role for facultative heterochromatin, coincident with high DMC1 and ASY1, in promoting crossovers in wheat and is reflected in distalized H3K27me3 enrichment observed via ChIP-seq and immunocytology. Genes with elevated crossover rates and high DMC1 and ASY1 ChIP-seq signals are overrepresented for defense-response and immunity annotations, have higher sequence polymorphism, and exhibit signatures of selection. Our findings are consistent with meiotic recombination promoting genetic diversity, shaping host-pathogen co-evolution, and accelerating adaptation by increasing the efficiency of selection.


Assuntos
Cromossomos de Plantas , Meiose , Triticum , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/genética , Heterocromatina , Histonas/genética , Meiose/genética , Triticum/genética
13.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37162382

RESUMO

MOTIVATION: The advent of long-read DNA sequencing is allowing complete assembly of highly repetitive genomic regions for the first time, including the megabase-scale satellite repeat arrays found in many eukaryotic centromeres. The assembly of such repetitive regions creates a need for their de novo annotation, including patterns of higher order repetition. To annotate tandem repeats, methods are required that can be widely applied to diverse genome sequences, without prior knowledge of monomer sequences. RESULTS: Tandem Repeat Annotation and Structural Hierarchy (TRASH) is a tool that identifies and maps tandem repeats in nucleotide sequence, without prior knowledge of repeat composition. TRASH analyses a fasta assembly file, identifies regions occupied by repeats and then precisely maps them and their higher order structures. To demonstrate the applicability and scalability of TRASH for centromere research, we apply our method to the recently published Col-CEN genome of Arabidopsis thaliana and the complete human CHM13 genome. AVAILABILITY AND IMPLEMENTATION: TRASH is freely available at:https://github.com/vlothec/TRASH and supported on Linux.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Sequências de Repetição em Tandem , Humanos , Sequência de Bases , Genômica/métodos , Centrômero/genética , Análise de Sequência de DNA/métodos
14.
New Phytol ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584326

RESUMO

Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus-induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1-fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.

15.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385313

RESUMO

The frequency and distribution of meiotic crossovers are tightly controlled; however, variation in this process can be observed both within and between species. Using crosses of two natural Arabidopsis thaliana accessions, Col and Ler, we mapped a crossover modifier locus to semidominant polymorphisms in SUPPRESSOR OF NPR1-1 INDUCIBLE 1 (SNI1), which encodes a component of the SMC5/6 complex. The sni1 mutant exhibits a modified pattern of recombination across the genome with crossovers elevated in chromosome distal regions but reduced in pericentromeres. Mutations in SNI1 result in reduced crossover interference and can partially restore the fertility of a Class I crossover pathway mutant, which suggests that the protein affects noninterfering crossover repair. Therefore, we tested genetic interactions between SNI1 and both RECQ4 and FANCM DNA helicases, which showed that additional Class II crossovers observed in the sni1 mutant are FANCM independent. Furthermore, genetic analysis of other SMC5/6 mutants confirms the observations of crossover redistribution made for SNI1 The study reveals the importance of the SMC5/6 complex in ensuring the proper progress of meiotic recombination in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Troca Genética/fisiologia , DNA Helicases/metabolismo , Variação Genética , Meiose/fisiologia , Proteínas Nucleares/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Helicases/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Domínios Proteicos
16.
PLoS Genet ; 17(12): e1009586, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34941903

RESUMO

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Assuntos
Parede Celular/genética , Proteínas de Escherichia coli/genética , Lipopolissacarídeos/genética , Oxirredutases/genética , Peptidoglicano/genética , Divisão Celular/genética , Membrana Celular/genética , Membrana Celular/microbiologia , Parede Celular/microbiologia , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Lipopolissacarídeos/biossíntese , Mutagênese , Fosfolipídeos/biossíntese , Fosfolipídeos/genética
17.
Nat Prod Rep ; 40(11): 1754-1808, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37555325

RESUMO

Covering literature to December 2022This review provides a comprehensive account of all natural products (500 compounds, including 17 semi-synthetic derivatives) described in the primary literature up to December 2022, reported to be capable of inhibiting the egg hatching, motility, larval development and/or the survival of helminths (i.e., nematodes, flukes and tapeworms). These parasitic worms infect and compromise the health and welfare, productivity and lives of commercial livestock (i.e., sheep, cattle, horses, pigs, poultry and fish), companion animals (i.e., dogs and cats) and other high value, endangered and/or exotic animals. Attention is given to chemical structures, as well as source organisms and anthelmintic properties, including the nature of bioassay target species, in vivo animal hosts, and measures of potency.


Assuntos
Anti-Helmínticos , Produtos Biológicos , Doenças do Gato , Doenças do Cão , Helmintos , Nematoides , Animais , Bovinos , Ovinos , Cavalos , Cães , Gatos , Suínos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Doenças do Gato/tratamento farmacológico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/parasitologia , Anti-Helmínticos/farmacologia , Anti-Helmínticos/química , Anti-Helmínticos/uso terapêutico
18.
Plant Biotechnol J ; 21(2): 405-418, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373224

RESUMO

Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination 'cold' regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.


Assuntos
Sistemas CRISPR-Cas , Triticum , Triticum/genética , Sistemas CRISPR-Cas/genética , Melhoramento Vegetal , Cromossomos , Meiose/genética
19.
Plant Cell ; 32(4): 1218-1239, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32024691

RESUMO

Meiosis recombines genetic variation and influences eukaryote genome evolution. During meiosis, DNA double-strand breaks (DSBs) enter interhomolog repair to yield crossovers and noncrossovers. DSB repair occurs as replicated sister chromatids are connected to a polymerized axis. Cohesin rings containing the REC8 kleisin subunit bind sister chromatids and anchor chromosomes to the axis. Here, we report the genomic landscape of REC8 using chromatin immunoprecipitation sequencing (ChIP-seq) in Arabidopsis (Arabidopsis thaliana). REC8 associates with regions of high nucleosome occupancy in multiple chromatin states, including histone methylation at H3K4 (expressed genes), H3K27 (silent genes), and H3K9 (silent transposons). REC8 enrichment is associated with suppression of meiotic DSBs and crossovers at the chromosome and fine scales. As REC8 enrichment is greatest in transposon-dense heterochromatin, we repeated ChIP-seq in kyp suvh5 suvh6 H3K9me2 mutants. Surprisingly, REC8 enrichment is maintained in kyp suvh5 suvh6 heterochromatin and no defects in centromeric cohesion were observed. REC8 occupancy within genes anti-correlates with transcription and is reduced in COPIA transposons that reactivate expression in kyp suvh5 suvh6 Abnormal axis structures form in rec8 that recruit DSB-associated protein foci and undergo synapsis, which is followed by chromosome fragmentation. Therefore, REC8 occupancy correlates with multiple chromatin states and is required to organize meiotic chromosome architecture and interhomolog recombination.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Genoma de Planta , Recombinação Homóloga , Meiose , Arabidopsis/citologia , Cromossomos de Plantas/genética , Troca Genética , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Heterocromatina/metabolismo , Mutação/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Supressão Genética , Coesinas
20.
Proc Natl Acad Sci U S A ; 117(24): 13647-13658, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32499315

RESUMO

During meiosis, interhomolog recombination produces crossovers and noncrossovers to create genetic diversity. Meiotic recombination frequency varies at multiple scales, with high subtelomeric recombination and suppressed centromeric recombination typical in many eukaryotes. During recombination, sister chromatids are tethered as loops to a polymerized chromosome axis, which, in plants, includes the ASY1 HORMA domain protein and REC8-cohesin complexes. Using chromatin immunoprecipitation, we show an ascending telomere-to-centromere gradient of ASY1 enrichment, which correlates strongly with REC8-cohesin ChIP-seq data. We mapped crossovers genome-wide in the absence of ASY1 and observe that telomere-led recombination becomes dominant. Surprisingly, asy1/+ heterozygotes also remodel crossovers toward subtelomeric regions at the expense of the pericentromeres. Telomeric recombination increases in asy1/+ occur in distal regions where ASY1 and REC8 ChIP enrichment are lowest in wild type. In wild type, the majority of crossovers show interference, meaning that they are more widely spaced along the chromosomes than expected by chance. To measure interference, we analyzed double crossover distances, MLH1 foci, and fluorescent pollen tetrads. Interestingly, while crossover interference is normal in asy1/+, it is undetectable in asy1 mutants, indicating that ASY1 is required to mediate crossover interference. Together, this is consistent with ASY1 antagonizing telomere-led recombination and promoting spaced crossover formation along the chromosomes via interference. These findings provide insight into the role of the meiotic axis in patterning recombination frequency within plant genomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Troca Genética , Proteínas de Ligação a DNA/metabolismo , Recombinação Genética , Telômero/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA