Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
FASEB J ; 21(13): 3763-70, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17586727

RESUMO

Bone is the primary anatomical site of breast cancer metastasis, and bone metastasis is associated with increased morbidity and mortality. Mesenchymal stem cells (MSC) are a predominant fibroblast cell population within the bone marrow, and metastatic breast cancer cells that seed within bone would predictably encounter MSC or their soluble factors. Therefore, we examined the impact of primary human MSC on a panel of estrogen receptor-alpha (ERalpha)-positive (MCF-7, T47D, BT474, and ZR-75-1) and ERalpha-negative (MDA-MB-231 and MDA-MB-468) human breast tumor cell lines. All ERalpha-positive breast tumor cell lines displayed low basal activation of signal transducer and activator of transcription 3 (STAT3) until exposed to MSC, which induced chronic phosphorylation of STAT3 on tyrosine-705. Paracrine IL-6 was found to be the principal mediator of STAT3 phosphorylation in coculture studies, and MSC induction of STAT3 phosphorylation was lost when IL-6 was depleted from MSC conditioned media or the IL-6 receptor was blocked on tumor cells. Enhanced tumor cell growth rates were observed in the ERalpha-positive mammary tumor cell line MCF-7 after paracrine and autocrine IL-6 exposure, where MCF-7 growth rates were enhanced by >2-fold when cocultured with MSC in vitro and even more pronounced in vivo with autocrine IL-6 production.


Assuntos
Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/metabolismo , Interleucina-6/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA