Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
Nano Lett ; 23(17): 8326-8330, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37611221

RESUMO

Bacterially induced sepsis requires rapid bacterial detection and identification. Hours count for critically ill septic patients, while current culture-based detection requires at least 10 h up to several days. Here, we apply a microfluidic device equipped with a bacterially activated, macrophage-membrane-coating on nanowired-Si adsorbent surfaces for rapid, bacterial detection and Gram-identification in bacterially contaminated blood. Perfusion of suspensions of Gram-negative or Gram-positive bacteria through a microfluidic device equipped with membrane-coated adsorbent surfaces detected low (<10 CFU/mL) bacterial levels. Subsequent, in situ fluorescence-staining yielded Gram-identification for guiding antibiotic selection. In mixed Escherichia coli and Staphylococcus aureus suspensions, Gram-negative and Gram-positive bacteria were detected in the same ratios as those fixed in suspension. Results were validated with a 100% correct score by blinded evaluation (two observers) of 15 human blood samples, spiked with widely different bacterial strains or combinations of strains, demonstrating the potential of the platform for rapid (1.5 h in total) diagnosis of bacterial sepsis.


Assuntos
Bactérias , Sepse , Humanos , Suspensões , Dispositivos Lab-On-A-Chip , Escherichia coli , Macrófagos , Sepse/diagnóstico
2.
Biofouling ; 39(2): 121-134, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36946276

RESUMO

Biofilm formation and detachment in drinking water distribution systems (DWDS) can lead to several operational issues. Here, an alternative biofilm control strategy of limiting bacterial adhesion by application of a poly(N-isopropylmethacrylamide)-based nanogel coating on DWDS pipe walls was investigated. The nanogel coatings were successfully deposited on surfaces of four polymeric pipe materials commonly applied in DWDS construction. Nanogel-coated and non-coated pipe materials were characterized in terms of their surface hydrophilicity and roughness. Four DWDS relevant bacterial strains, representing Sphingomonas and Pseudomonas, were used to evaluate the anti-adhesive performance of the coating in 4 h adhesion and 24 h biofilm assays. The presence of the nanogel coating resulted in adhesion reduction up to 97%, and biofilm reduction up to 98%, compared to non-coated surfaces. These promising results motivate further investigation of nanogel coatings as a strategy for biofilm prevention in DWDS.


Assuntos
Água Potável , Água Potável/microbiologia , Nanogéis , Biofilmes , Bactérias
3.
Small ; 18(48): e2204350, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36269872

RESUMO

Extracellular outer-membrane vesicles (OMVs) are attractive for use as drug nanocarriers, because of their high biocompatibility and ability to enter cells. However, widespread use is hampered by low yields. Here, a high-yield method for magnetic harvesting of OMVs from Escherichia coli is described. To this end, E. coli are grown in the presence of magnetic iron-oxide nanoparticles (MNPs). Uptake of MNPs by E. coli is low and does not increase secretion of OMVs. Uptake of MNPs can be enhanced through PEGylation of MNPs. E. coli growth in the presence of PEGylated MNPs increases bacterial MNP-uptake and OMV-secretion, accompanied by upregulation of genes involved in OMV-secretion. OMVs containing MNPs can be magnetically harvested at 60-fold higher yields than achieved by ultracentrifugation. Functionally, magnetically-harvested OMVs and OMVs harvested by ultracentrifugation are both taken-up in similar numbers by bacteria. Uniquely, in an applied magnetic field, magnetically-harvested OMVs with MNPs accumulate over the entire depth of an infectious biofilm. OMVs harvested by ultracentrifugation without MNPs only accumulate near the biofilm surface. In conclusion, PEGylation of MNPs is essential for their uptake in E. coli and yields magnetic OMVs allowing high-yield magnetic-harvesting. Moreover, magnetic OMVs can be magnetically targeted to a cargo delivery site in the human body.


Assuntos
Escherichia coli , Vesículas Extracelulares , Humanos , Biofilmes , Fenômenos Magnéticos
4.
Crit Rev Microbiol ; 48(3): 283-302, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34411498

RESUMO

Bacterial biofilms occur in many natural and industrial environments. Besides bacteria, biofilms comprise over 70 wt% water. Water in biofilms occurs as bound- or free-water. Bound-water is adsorbed to bacterial surfaces or biofilm (matrix) structures and possesses different Infra-red and Nuclear-Magnetic-Resonance signatures than free-water. Bound-water is different from intra-cellularly confined-water or water confined within biofilm structures and bacteria are actively involved in building water-filled structures by bacterial swimmers, dispersion or lytic self-sacrifice. Water-filled structures can be transient due to blocking, resulting from bacterial growth, compression or additional matrix formation and are generally referred to as "channels and pores." Channels and pores can be distinguished based on mechanism of formation, function and dimension. Channels allow transport of nutrients, waste-products, signalling molecules and antibiotics through a biofilm provided the cargo does not adsorb to channel walls and channels have a large length/width ratio. Pores serve a storage function for nutrients and dilute waste-products or antimicrobials and thus should have a length/width ratio close to unity. The understanding provided here on the role of water in biofilms, can be employed to artificially engineer by-pass channels or additional pores in industrial and environmental biofilms to increase production yields or enhance antimicrobial penetration in infectious biofilms.


Assuntos
Anti-Infecciosos , Água , Antibacterianos , Bactérias/genética , Biofilmes
5.
Nanomedicine ; 32: 102324, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33181276

RESUMO

Nanotechnology offers many novel infection-control strategies that may help prevent and treat antimicrobial-resistant bacterial infections. Here, we synthesized polydopamine, photothermal-nanoparticles (PDA-NPs) without further surface-functionalization to evaluate their potential with respect to biofilm-control. Most ESKAPE-panel pathogens in suspension with photothermal-nanoparticles showed three- to four-log-unit reductions upon Near-Infra-Red (NIR)-irradiation, but for enterococci only less than two-log unit reduction was observed. Exposure of existing Staphylococcus aureus biofilms to photothermal-nanoparticles followed by NIR-irradiation did not significantly kill biofilm-inhabitants. This indicates that the biofilm mode of growth poses a barrier to penetration of photothermal-nanoparticles, yielding dissipation of heat to the biofilm-surrounding rather than in its interior. Staphylococcal biofilm-growth in the presence of photothermal-nanoparticles could be significantly prevented after NIR-irradiation because PDA-NPs were incorporated in the biofilm and heat dissipated inside it. Thus, unmodified photothermal nanoparticles have potential for prophylactic infection-control, but data also constitute a warning for possible development of thermo-resistance in infectious pathogens.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Biofilmes/crescimento & desenvolvimento , Indóis/farmacologia , Raios Infravermelhos , Nanopartículas/química , Polímeros/farmacologia , Temperatura , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Staphylococcus aureus/fisiologia
6.
Clin Oral Investig ; 25(7): 4459-4469, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33661446

RESUMO

OBJECTIVES: The study aimed to quantify the lubricating properties of chewing stimulated whole saliva from healthy controls (n = 22), from patients suffering from primary Sjögren's syndrome (n = 37) and from patients undergoing head-and-neck radiotherapy (n = 34). MATERIALS AND METHODS: All participants had to complete the Xerostomia Inventory questionnaire to score dry mouth sensation. Lubrication was measured using an ex vivo tongue-enamel friction system in terms of Relief and Relief period. MUC5b and total protein concentrations of the saliva samples were measured by an enzyme-linked immunosorbent assay and a bicinchoninic acid assay, respectively. RESULTS: Relief of Sjögren's patients' saliva and post-irradiation patients' saliva was similar compared with healthy controls, but saliva from post-irradiation patients lubricated significantly better than saliva from Sjögren's patients. The Relief period was similar between the three groups. The Relief and Relief period were higher for saliva samples post-irradiation compared to pre-irradiation. MUC5b and total protein concentrations were comparable in all groups. MUC5b and total protein output were significantly lower in patients subjected to radiotherapy compared to saliva from healthy controls and pre-irradiation patients. MUC5b concentrations positively correlated with lubricating properties of post-irradiation patient saliva. CONCLUSIONS: The lubricating properties of patient saliva were not any worse than healthy controls. Lower flow rate leads to lower availability of saliva in the oral cavity and decreases the overall output of protein and MUC5b, which might result in an insufficient replenishing of the mucosal salivary film. CLINICAL RELEVANCE: An insufficient replenishing might underlie the sensation of a dry mouth and loss of oral function.


Assuntos
Síndrome de Sjogren , Xerostomia , Humanos , Mastigação , Mucina-5B , Saliva
7.
Angew Chem Int Ed Engl ; 60(32): 17714-17719, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34028150

RESUMO

A lipid named DCPA was synthesized under microwave-assisted heating. DCPA possesses a pyridine betaine, hydrophilic group that can be complexed with water through hydrogen bonding (DCPA-H2 O). DCPA-H2 O liposomes became protonated relatively fast already at pH<6.8, due to the high HOMO binding energy of DCPA-H2 O. In murine models, DCPA-H2 O liposomes had longer blood circulation times than natural DPPC or cationic DCPM liposomes, while after tail-vein injection DCPA-H2 O liposomes targeted faster to solid tumors and intra-abdominal infectious biofilms. Therapeutic efficacy in a murine, infected wound-healing model of tail-vein injected ciprofloxacin-loaded DCPA-H2 O liposomes exceeded the ones of clinically applied ciprofloxacin as well as of ciprofloxacin-loaded DPPC or DCPM liposomes.


Assuntos
Portadores de Fármacos/farmacocinética , Lipossomos/farmacocinética , Neoplasias/diagnóstico por imagem , Infecções Estafilocócicas/diagnóstico por imagem , Água/química , Acetatos/síntese química , Acetatos/farmacocinética , Animais , Antibacterianos/uso terapêutico , Biofilmes , Ciprofloxacina/uso terapêutico , Portadores de Fármacos/síntese química , Feminino , Corantes Fluorescentes/química , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Lipossomos/química , Masculino , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/fisiologia , Compostos de Piridínio/síntese química , Compostos de Piridínio/farmacocinética , Ratos Sprague-Dawley , Rodaminas/química , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Tuberculose/diagnóstico por imagem , Tuberculose/fisiopatologia
8.
Adv Funct Mater ; 30(48)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34737689

RESUMO

Internalization of Staphylococcus aureus by macrophages can inactivate bacterial killing mechanisms, allowing intracellular residence and dissemination of infection. Concurrently, these staphylococci can evade antibiotics that are frequently unable to pass mammalian cell membranes. A binary, amphiphilic conjugate composed of triclosan and ciprofloxacin is synthesized that self-assemble through micelle formation into antimicrobial nanoparticles (ANPs). These novel ANPs are stabilized through encapsulation in macrophage membranes, providing membrane-encapsulated, antimicrobial-conjugated NPs (Me-ANPs) with similar protein activity, Toll-like receptor expression and negative surface charge as their precursor murine macrophage/human monocyte cell lines. The combination of Toll-like receptors and negative surface charge allows uptake of Me-ANPs by infected macrophages/monocytes through positively charged, lysozyme-rich membrane scars created during staphylococcal engulfment. Me-ANPs are not engulfed by more negatively charged sterile cells possessing less lysozyme at their surface. The Me-ANPs kill staphylococci internalized in macrophages in vitro. Me-ANPs likewise kill staphylococci more effectively than ANPs without membrane-encapsulation or clinically used ciprofloxacin in a mouse peritoneal infection model. Similarly, organ infections in mice created by dissemination of infected macrophages through circulation in the blood are better eradicated by Me-ANPs than by ciprofloxacin. These unique antimicrobial properties of macrophage-monocyte Me-ANPs provide a promising direction for human clinical application to combat persistent infections.

9.
Microsc Microanal ; 26(6): 1211-1219, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33107427

RESUMO

Imaging of cellular layers in a gut-on-a-chip system has been confined to two-dimensional (2D)-imaging through conventional light microscopy and confocal laser scanning microscopy (CLSM) yielding three-dimensional- and 2D-cross-sectional reconstructions. However, CLSM requires staining and is unsuitable for longitudinal visualization. Here, we compare merits of optical coherence tomography (OCT) with those of CLSM and light microscopy for visualization of intestinal epithelial layers during protection by a probiotic Bifidobacterium breve strain and a simultaneous pathogen challenge by an Escherichia coli strain. OCT cross-sectional images yielded film thicknesses that coincided with end-point thicknesses derived from cross-sectional CLSM images. Light microscopy on histological sections of epithelial layers at the end-point yielded smaller layer thicknesses than OCT and CLSM. Protective effects of B. breve adhering to an epithelial layer against an E. coli challenge included the preservation of layer thickness and membrane surface coverage by epithelial cells. OCT does not require staining or sectioning, making OCT suitable for longitudinal visualization of biological films, but as a drawback, OCT does not allow an epithelial layer to be distinguished from bacterial biofilms adhering to it. Thus, OCT is ideal to longitudinally evaluate epithelial layers under probiotic protection and pathogen challenges, but proper image interpretation requires the application of a second method at the end-point to distinguish bacterial and epithelial films.


Assuntos
Tomografia de Coerência Óptica , Estudos Transversais , Escherichia coli , Dispositivos Lab-On-A-Chip , Microscopia Confocal
10.
Chem Soc Rev ; 48(2): 428-446, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30601473

RESUMO

Bacterial-infections are mostly due to bacteria in an adhering, biofilm-mode of growth and not due to planktonically growing, suspended-bacteria. Biofilm-bacteria are much more recalcitrant to conventional antimicrobials than planktonic-bacteria due to (1) emergence of new properties of biofilm-bacteria that cannot be predicted on the basis of planktonic properties, (2) low penetration and accumulation of antimicrobials in a biofilm, (3) disabling of antimicrobials due to acidic and anaerobic conditions prevailing in a biofilm, and (4) enzymatic modification or inactivation of antimicrobials by biofilm inhabitants. In recent years, new nanotechnology-based antimicrobials have been designed to kill planktonic, antibiotic-resistant bacteria, but additional requirements rather than the mere killing of suspended bacteria must be met to combat biofilm-infections. The requirements and merits of nanotechnology-based antimicrobials for the control of biofilm-infection form the focus of this Tutorial Review.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/química , Nanotecnologia/métodos , Anti-Infecciosos/química , Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Humanos , Nanopartículas/química
11.
Nano Lett ; 19(7): 4327-4333, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31142116

RESUMO

Multidrug resistant bacterial infections threaten to become the number one cause of death by the year 2050. Development of antimicrobial dendritic polymers is considered promising as an alternative infection control strategy. For antimicrobial dendritic polymers to effectively kill bacteria residing in infectious biofilms, they have to penetrate and accumulate deep into biofilms. Biofilms are often recalcitrant to antimicrobial penetration and accumulation. Therefore, this work aims to determine the role of compact dendrons with different peripheral composition in their penetration into Pseudomonas aeruginosa biofilms. Red fluorescently labeled dendrons with pH-responsive NH3+ peripheral groups initially penetrated faster from a buffer suspension at pH 7.0 into the acidic environment of P. aeruginosa biofilms than dendrons with OH or COO- groups at their periphery. In addition, dendrons with NH3+ peripheral groups accumulated near the top of the biofilm due to electrostatic double-layer attraction with negatively charged biofilm components. However, accumulation of dendrons with OH and COO- peripheral groups was more evenly distributed across the depth of the biofilms than NH3+ composed dendrons and exceeded accumulation of NH3+ composed dendrons after 10 min of exposure. Unlike dendrons with NH3+ groups at their periphery, dendrons with OH or COO- peripheral groups, lacking strong electrostatic double-layer attraction with biofilm components, were largely washed-out during exposure to PBS without dendrons. Thus, penetration and accumulation of dendrons into biofilms is controlled by their peripheral composition through electrostatic double-layer interactions, which is an important finding for the further development of new antimicrobial or antimicrobial-carrying dendritic polymers.


Assuntos
Antibacterianos , Biofilmes/efeitos dos fármacos , Dendrímeros , Pseudomonas aeruginosa/fisiologia , Antibacterianos/química , Antibacterianos/farmacologia , Dendrímeros/química , Dendrímeros/farmacologia , Concentração de Íons de Hidrogênio
12.
Artigo em Inglês | MEDLINE | ID: mdl-30745390

RESUMO

Pseudomonas aeruginosa colonizes the sputum of most adult cystic fibrosis patients, forming difficult-to-eradicate biofilms in which bacteria are protected in their self-produced extracellular polymeric substance (EPS) matrices. EPS provide biofilms with viscoelastic properties, causing time-dependent relaxation after stress-induced deformation, according to multiple characteristic time constants. These time constants reflect different biofilm (matrix) components. Since the viscoelasticity of biofilms has been related to antimicrobial penetration but not yet bacterial killing, this study aims to relate killing of P. aeruginosa, in its biofilm mode of growth, by three antimicrobials to biofilm viscoelasticity. P. aeruginosa biofilms were grown for 18 h in a constant-depth film fermenter, with mucin-containing artificial sputum medium (ASM+), artificial sputum medium without mucin (ASM-), or Luria-Bertani (LB) broth; this yielded 100-µm-thick biofilms that differed in their amounts of matrix environmental DNA (eDNA) and polysaccharides. Low-load compression testing, followed by three-element Maxwell analyses, showed that the fastest relaxation component, associated with unbound water, was most important in LB-medium-grown biofilms. Slower components due to water with dissolved polysaccharides, insoluble polysaccharides, and eDNA were most important in the relaxation of ASM+-grown biofilms. ASM--grown biofilms showed intermediate stress relaxation. P. aeruginosa in LB-medium-grown biofilms was killed most by exposure to tobramycin, colistin, or an antimicrobial peptide, while ASM+ provided the most protective matrix, with less water and most insoluble polysaccharides and eDNA. In conclusion, stress relaxation of P. aeruginosa biofilms grown in different media revealed differences in matrix composition that, within the constraints of the antimicrobials and growth media applied, correlated with the matrix protection offered against different antimicrobials.


Assuntos
Antibacterianos/farmacologia , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Colistina/farmacologia , Meios de Cultura/química , Matriz Extracelular/química , Testes de Sensibilidade Microbiana , Mucinas , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia , Viscosidade
13.
Small ; 15(39): e1902313, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31385644

RESUMO

The poor penetrability of many biofilms contributes to the recalcitrance of infectious biofilms to antimicrobial treatment. Here, a new application for the use of magnetic nanoparticles in nanomedicine to create artificial channels in infectious biofilms to enhance antimicrobial penetration and bacterial killing is proposed. Staphylococcus aureus biofilms are exposed to magnetic-iron-oxide nanoparticles (MIONPs), while magnetically forcing MIONP movement through the biofilm. Confocal laser scanning microscopy demonstrates artificial channel digging perpendicular to the substratum surface. Artificial channel digging significantly (4-6-fold) enhances biofilm penetration and bacterial killing efficacy by gentamicin in two S. aureus strains with and without the ability to produce extracellular polymeric substances. Herewith, this work provides a simple, new, and easy way to enhance the eradication of infectious biofilms using MIONPs combined with clinically applied antibiotic therapies.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas de Magnetita/química , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Gentamicinas/química , Gentamicinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
14.
Langmuir ; 35(17): 5779-5786, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30673292

RESUMO

Nosocomial infections are a major problem in medical health care. To solve this problem, a series of antimicrobial waterborne paints were prepared by using antimicrobial hyperbranched (HB) emulsifiers. The HB-emulsifiers were prepared by polymerizing AB2 monomers obtained in a one-step reaction of bis(hexamethylene)triamine and carbonyl biscaprolactam. The blocked isocyanate end groups (B groups) of the HB-polymer were utilized to introduce tertiary amino groups through the reaction with compounds comprising either a hydroxyl or a primary amino group and a tertiary amino group. Quaternization of the tertiary amines with 6 different alkyl bromides resulted in 12 amphiphilic cationic species. The 12 emulsifiers showed the successful inhibition and killing of 8 bacterial and 2 fungal strains. The killing efficacy increased with increasing alkyl chain length. The octyl-functionalized compound was chosen for suspension polymerizations because of the good compromise between killing and emulsifying properties. With this emulsifier, aqueous poly(methacrylate) suspensions were prepared, which were stable and had excellent killing properties.


Assuntos
Antibacterianos/farmacologia , Emulsificantes/farmacologia , Pintura , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Candida albicans/efeitos dos fármacos , Candida parapsilosis/efeitos dos fármacos , Emulsificantes/síntese química , Emulsificantes/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus/efeitos dos fármacos
15.
Biomacromolecules ; 20(1): 243-253, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30512925

RESUMO

Bacterial infection is a severe problem especially when associated with biomedical applications. This study effectively demonstrates that poly- N-isopropylmethacrylamide based microgel coatings prevent bacterial adhesion. The coating preparation via a spraying approach proved to be simple and both cost and time efficient creating a homogeneous dense microgel monolayer. In particular, the influence of cross-linking density, microgel size, and coating thickness was investigated on the initial bacterial adhesion. Adhesion of Staphylococcus aureus ATCC 12600 was imaged using a parallel plate flow chamber setup, which gave insights in the number of the total bacteria adhering per unit area onto the surface and the initial bacterial deposition rates. All microgel coatings successfully yielded more than 98% reduction in bacterial adhesion. Bacterial adhesion depends both on the cross-linking density/stiffness of the microgels and on the thickness of the microgel coating. Bacterial adhesion decreased when a lower cross-linking density was used at equal coating thickness and at equal cross-linking density with a thicker microgel coating. The highest reduction in the number of bacterial adhesion was achieved with the microgel that produced the thickest coating ( h = 602 nm) and had the lowest cross-linking density. The results provided in this paper indicate that microgel coatings serve as an interesting and easy applicable approach and that it can be fine-tuned by manipulating the microgel layer thickness and stiffness.


Assuntos
Aderência Bacteriana , Microgéis/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Reagentes de Ligações Cruzadas/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
16.
Appl Environ Microbiol ; 84(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054874

RESUMO

The viscoelasticity of a biofilm's EPS (extracellular polymeric substance) matrix conveys protection against mechanical challenges, but adaptive responses of biofilm inhabitants to produce EPS are not well known. Here, we compare the responses of a biofilm of an EPS-producing (ATCC 12600) and a non-EPS producing (5298) Staphylococcus aureus strain to fluid shear and mechanical challenge. Confocal laser scanning microscopy confirmed absence of calcofluor-white-stainable EPS in biofilms of S. aureus 5298. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with tribometry indicated that polysaccharide production per bacterium in the initial adhering layer was higher during growth at high shear than at low shear and that this increased EPS production extended to entire biofilms, as indicated by tribometrically measured coefficients of friction (CoF). CoF of biofilms grown under high fluid shear were higher than those when grown under low shear, likely due to wash-off polysaccharides. Measurement of a biofilm's CoF implies application of mechanical pressure that yielded an immediate increase in the polysaccharide band area of S. aureus ATCC 12600 biofilms due to their compression. Compression decreased after relief of pressure to the level observed prior to mechanical pressure. For biofilms grown under high shear, this coincided with a higher percent whiteness in optical coherence tomography-images indicative of water outflow, returning back into the biofilm during stress relaxation. Biofilms grown under low shear, however, were stimulated during tribometry to produce EPS, also after relief of stress. Knowledge of factors that govern EPS production and water flow in biofilms will allow better control of biofilms under mechanical challenge and better understanding of the barrier properties of biofilms against antimicrobial penetration.IMPORTANCE Adaptive responses of biofilm inhabitants in nature to environmental challenges such as fluid shear and mechanical pressure often involve EPS production with the aim of protecting biofilm inhabitants. EPS can assist biofilm bacteria in remaining attached or can impede antimicrobial penetration. The TriboChemist is a recently introduced instrument, allowing the study of initially adhering bacteria to a germanium crystal using ATR-FTIR spectroscopy, while simultaneously allowing measurement of the coefficient of friction of a biofilm, which serves as an indicator of the EPS content of a biofilm. EPS production can be stimulated by both fluid shear during growth and mechanical pressure, while increased EPS production can continue after pressure relaxation of the biofilm. Since EPS is pivotal in the protection of biofilm inhabitants against mechanical and chemical challenges, knowledge of the factors that make biofilm inhabitants decide to produce EPS, as provided in this study, is important for the development of biofilm control measures.


Assuntos
Matriz Extracelular de Substâncias Poliméricas/fisiologia , Staphylococcus aureus/fisiologia , Hidrodinâmica , Microscopia Confocal , Pressão , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802194

RESUMO

The transmission of bacteria in biofilms from donor to receiver surfaces precedes the formation of biofilms in many applications. Biofilm transmission is different from bacterial adhesion, because it involves biofilm compression in between two surfaces, followed by a separation force leading to the detachment of the biofilm from the donor surface and subsequent adhesion to the receiver surface. Therewith, the transmission depends on a balance between donor and receiver surface properties and the cohesiveness of the biofilm itself. Here, we compare bacterial transmission from biofilms of an extracellular-polymeric-substance (EPS)-producing and a non-EPS-producing staphylococcal strain and a dual-species oral biofilm from smooth silicon (Si) donor surfaces to smooth and nanopillared Si receiver surfaces. Biofilms were fully covering the donor surface before transmission. However, after transmission, the biofilms only partly covered the donor and receiver surfaces regardless of nanopillaring, indicating bacterial transmission through adhesive failure at the interface between biofilms and donor surfaces as well as through cohesive failure in the biofilms. The numbers of bacteria per unit volume in EPS-producing staphylococcal biofilms before transmission were 2-fold smaller than in biofilms of the non-EPS-producing strain and of dual species. This difference increased after transmission in the biofilm left behind on the donor surfaces due to an increased bacterial density for the non-EPS-producing strain and a dual-species biofilm. This suggests that biofilms of the non-EPS-producing strain and dual species remained compressed after transmission, while biofilms of the EPS-producing strain were induced to produce more EPS during transmission and relaxed toward their initial state after transmission due to the viscoelasticity conferred to the biofilm by its EPS.IMPORTANCE Bacterial transmission from biofilm-covered surfaces to surfaces is mechanistically different from bacterial adhesion to surfaces and involves detachment from the donor and adhesion to the receiver surfaces under pressure. Bacterial transmission occurs, for instance, in food processing or packaging, in household situations, or between surfaces in hospitals. Patients admitted to a hospital room previously occupied by a patient with antibiotic-resistant pathogens are at elevated infection risk by the same pathogens through transmission. Nanopillared receiver surfaces did not collect less biofilm from a smooth donor than a smooth receiver, likely because the pressure applied during transmission negated the smaller contact area between bacteria and nanopillared surfaces, generally held responsible for reduced adhesion. Biofilm left behind on smooth donor surfaces of a non-extracellular-polymeric-substance (EPS)-producing strain and dual species had undergone different structural changes than an EPS-producing strain, which is important for their possible further treatment by antimicrobials or disinfectants.


Assuntos
Biofilmes , Staphylococcus/química , Fenômenos Biomecânicos , Elasticidade , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Staphylococcus/fisiologia , Propriedades de Superfície , Viscosidade
18.
Langmuir ; 34(17): 4937-4944, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29649869

RESUMO

Models for bacterial adhesion to substratum surfaces all include uncertainty with respect to the (ir)reversibility of adhesion. In a model, based on vibrations exhibited by adhering bacteria parallel to a surface, adhesion was described as a result of reversible binding of multiple bacterial tethers that detach from and successively reattach to a surface, eventually making bacterial adhesion irreversible. Here, we use total internal reflection microscopy to determine whether adhering bacteria also exhibit variations over time in their perpendicular distance above surfaces. Streptococci with fibrillar surface tethers showed perpendicular vibrations with amplitudes of around 5 nm, regardless of surface hydrophobicity. Adhering, nonfibrillated streptococci vibrated with amplitudes around 20 nm above a hydrophobic surface. Amplitudes did not depend on ionic strength for either strain. Calculations of bacterial energies from their distances above the surfaces using the Boltzman equation showed that bacteria with fibrillar tethers vibrated as a harmonic oscillator. The energy of bacteria without fibrillar tethers varied with distance in a comparable fashion as the DLVO (Derjaguin, Landau, Verwey, and Overbeek)-interaction energy. Distance variations above the surface over time of bacteria with fibrillar tethers are suggested to be governed by the harmonic oscillations, allowed by elasticity of the tethers, piercing through the potential energy barrier. Bacteria without fibrillar tethers "float" above a surface in the secondary energy minimum, with their perpendicular displacement restricted by their thermal energy and the width of the secondary minimum. The distinction between "tether-coupled" and "floating" adhesion is new, and may have implications for bacterial detachment strategies.


Assuntos
Aderência Bacteriana , Fenômenos Fisiológicos Bacterianos , Microbiologia Ambiental , Interações Hidrofóbicas e Hidrofílicas , Bactérias , Concentração Osmolar , Propriedades de Superfície , Vibração
19.
Cell Microbiol ; 18(4): 605-14, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26477544

RESUMO

Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus.


Assuntos
Aderência Bacteriana , Membrana Celular/fisiologia , Células Epiteliais/microbiologia , Vagina/microbiologia , Adesividade , Linhagem Celular , Feminino , Humanos
20.
Phys Chem Chem Phys ; 19(37): 25391-25400, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28894860

RESUMO

A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio)colloids to obtain viscoelastic bond properties is still a subject of debate. Here, we analyze the QCM-D output to analyze the bond between two hydrophilic streptococcal strains 91 nm long and without fibrillar surface appendages and micron-sized hydrophobic polystyrene particles on QCM-D crystal surfaces with different hydrophobicities, using the Kelvin-Voigt model and the Maxwell model. A Poisson distribution was implemented in order to determine the possible virtues of including polydispersity when fitting model parameters to the data. The quality of the fits did not indicate whether the Kelvin-Voigt or the Maxwell model is preferable and only polydispersity in spring-constants improved the fit for polystyrene particles. The Kelvin-Voigt and Maxwell models both yielded higher spring-constants for the bald streptococcus than for the fibrillated one. In both models, the drag coefficients increased for the bald streptococcus with the ratio of electron-donating over electron-accepting parameters of the crystal surface, while for the fibrillated strain the drag coefficient was similar on all crystal surfaces. Combined with the propensity of fibrillated streptococci to bind to the sensor crystal as a coupled-resonator above the crystal surface, this suggests that the drag experienced by resonator-coupled, hydrophilic particles is more influenced by the viscosity of the bulk water than by interfacial water adjacent to the crystal surface. Hydrophilic particles that lack a surface tether are mass-coupled just above the crystal surface and accordingly probe the drag due to the thin layer of interfacial water that is differently structured on hydrophobic and hydrophilic surfaces. Hydrophobic particles without a surface tether are also mass-coupled, but their drag coefficient decreases when the ratio of electron-donating over electron-accepting parameters increases, suggesting that hydrophobic particles experience less drag due to the structured water adjacent to the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA