RESUMO
Proliferating mammalian cells use glutamine as a source of nitrogen and as a key anaplerotic source to provide metabolites to the tricarboxylic acid cycle (TCA) for biosynthesis. Recently, mammalian target of rapamycin complex 1 (mTORC1) activation has been correlated with increased nutrient uptake and metabolism, but no molecular connection to glutaminolysis has been reported. Here, we show that mTORC1 promotes glutamine anaplerosis by activating glutamate dehydrogenase (GDH). This regulation requires transcriptional repression of SIRT4, the mitochondrial-localized sirtuin that inhibits GDH. Mechanistically, mTORC1 represses SIRT4 by promoting the proteasome-mediated destabilization of cAMP-responsive element binding 2 (CREB2). Thus, a relationship between mTORC1, SIRT4, and cancer is suggested by our findings. Indeed, SIRT4 expression is reduced in human cancer, and its overexpression reduces cell proliferation, transformation, and tumor development. Finally, our data indicate that targeting nutrient metabolism in energy-addicted cancers with high mTORC1 signaling may be an effective therapeutic approach.
Assuntos
Glutamina/metabolismo , Proteínas Mitocondriais/metabolismo , Neoplasias/metabolismo , Sirtuínas/metabolismo , Fatores Ativadores da Transcrição/metabolismo , Animais , Proliferação de Células , Embrião de Mamíferos/citologia , Metabolismo Energético , Glutamato Desidrogenase/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Transplante de Neoplasias , Neoplasias/patologia , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica , Transplante Heterólogo , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , UbiquitinaçãoRESUMO
The mammalian target of Rapamycin complex 1 (mTORC1) is a serine/threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However, recent studies have indicated that mTORC1 may be active toward its canonical substrates, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase (S6K), involved in mRNA translation and protein synthesis, and inactive toward TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt-Hogg-Dubé syndrome (BHD) and, recently, tuberous sclerosis complex (TSC). Furthermore, increased TFEB and TFE3 nuclear localization in these syndromes, and in translocation renal cell carcinomas (tRCC), drives mTORC1 activity toward the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity toward 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies." Currently, there are no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Neoplasias Renais , Serina-Treonina Quinases TOR , Humanos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/genética , Animais , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Síndrome de Birt-Hogg-Dubé/metabolismo , Síndrome de Birt-Hogg-Dubé/genética , Transdução de Sinais , Carcinogênese/metabolismo , Carcinogênese/genética , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/genéticaRESUMO
Safe and efficacious systemic delivery of messenger RNA (mRNA) to specific organs and cells in vivo remains the major challenge in the development of mRNA-based therapeutics. Targeting of systemically administered lipid nanoparticles (LNPs) coformulated with mRNA has largely been confined to the liver and spleen. Using a library screening approach, we identified that N-series LNPs (containing an amide bond in the tail) are capable of selectively delivering mRNA to the mouse lung, in contrast to our previous discovery that O-series LNPs (containing an ester bond in the tail) that tend to deliver mRNA to the liver. We analyzed the protein corona on the liver- and lung-targeted LNPs using liquid chromatography-mass spectrometry and identified a group of unique plasma proteins specifically absorbed onto the surface that may contribute to the targetability of these LNPs. Different pulmonary cell types can also be targeted by simply tuning the headgroup structure of N-series LNPs. Importantly, we demonstrate here the success of LNP-based RNA therapy in a preclinical model of lymphangioleiomyomatosis (LAM), a destructive lung disease caused by loss-of-function mutations in the Tsc2 gene. Our lung-targeting LNP exhibited highly efficient delivery of the mouse tuberous sclerosis complex 2 (Tsc2) mRNA for the restoration of TSC2 tumor suppressor in tumor and achieved remarkable therapeutic effect in reducing tumor burden. This research establishes mRNA LNPs as a promising therapeutic intervention for the treatment of LAM.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Linfangioleiomiomatose/tratamento farmacológico , RNA Mensageiro/administração & dosagem , Animais , Feminino , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Lipossomos/química , Lipossomos/farmacologia , Pulmão/citologia , Pulmão/patologia , Pneumopatias/tratamento farmacológico , Pneumopatias/metabolismo , Linfangioleiomiomatose/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , RNA Interferente Pequeno/metabolismoRESUMO
Chromophobe (Ch) renal cell carcinoma (RCC) arises from the intercalated cell in the distal nephron. There are no proven treatments for metastatic ChRCC. A distinguishing characteristic of ChRCC is strikingly high levels of reduced (GSH) and oxidized (GSSG) glutathione. Here, we demonstrate that ChRCC-derived cells exhibit higher sensitivity to ferroptotic inducers compared with clear-cell RCC. ChRCC-derived cells are critically dependent on cystine via the cystine/glutamate antiporter xCT to maintain high levels of glutathione, making them sensitive to inhibitors of cystine uptake and cyst(e)inase. Gamma-glutamyl transferase 1 (GGT1), a key enzyme in glutathione homeostasis, is markedly suppressed in ChRCC relative to normal kidney. Importantly, GGT1 overexpression inhibits the proliferation of ChRCC cells in vitro and in vivo, suppresses cystine uptake, and decreases levels of GSH and GSSG. Collectively, these data identify ferroptosis as a metabolic vulnerability in ChRCC, providing a potential avenue for targeted therapy for these distinctive tumors.
Assuntos
Sistema y+ de Transporte de Aminoácidos , Carcinoma de Células Renais , Cistina , Ferroptose , Glutationa , Neoplasias Renais , Sistema y+ de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Cistina/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/deficiência , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Terapia de Alvo Molecular , gama-Glutamiltransferase/metabolismoRESUMO
This research aims to compare and assess the clinical and radiological presentations of tuberous sclerosis complex (TSC)-associated lymphangioleiomyomatosis (LAM) and sporadic LAM. A retrospective medical record review was conducted for 90 patients with confirmed LAM diagnoses. Radiologists who were blinded to the LAM type evaluated CT images of the chest and abdomen for the presence of four CT phenotypes: multiple sclerotic bone lesions (SBLs), multifocal micronodular pneumocyte hyperplasia (MMPH), hepatic fat-containing lesions, and cardiac fat-containing lesions. Statistical analyses were then completed to analyze the differences between TSC-LAM and sporadic LAM. Sporadic LAM patients reported a greater number of clinical symptoms at the time of diagnosis than TSC-LAM patients. All four CT phenotypes were present among the TSC-LAM patient population, whereas hepatic fat containing lesions were the only phenotype present in sporadic LAM patients evaluated in this study. The clinical and radiological presentations of sporadic LAM and TSC-LAM differ significantly, suggesting that the diagnostic criteria for sporadic LAM and/or TSC itself could be adapted accordingly. However, the similarities in the presentation of the LAM types are also important to note as these trends inform theories surrounding the potential underlying pathogenic mechanisms of sporadic LAM.
RESUMO
Multiple hereditary syndromes predispose to kidney cancer, including Von Hippel-Lindau syndrome, BAP1-Tumor Predisposition Syndrome, Hereditary Papillary Renal Cell Carcinoma, Tuberous Sclerosis Complex, Birt-Hogg-Dubé syndrome, Hereditary Paraganglioma-Pheochromocytoma Syndrome, Fumarate Hydratase Tumor Predisposition Syndrome, and Cowden syndrome. In some cases, mutations in the genes that cause hereditary kidney cancer are tightly linked to similar histologic features in sporadic RCC. For example, clear cell RCC occurs in the hereditary syndrome VHL, and sporadic ccRCC usually has inactivation of the VHL gene. In contrast, mutations in FLCN, the causative gene for Birt-Hogg-Dube syndrome, are rarely found in sporadic RCC. Here, we focus on the genes and pathways that link hereditary and sporadic RCC.
Assuntos
Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renais , Neoplasias Renais , Síndromes Neoplásicas Hereditárias , Humanos , Síndrome de Birt-Hogg-Dubé/genética , Neoplasias Renais/genética , Neoplasias Renais/patologia , Síndromes Neoplásicas Hereditárias/genética , CarcinogêneseRESUMO
Tuberous sclerosis complex (TSC) is caused by mutations in either TSC1 or TSC2 genes and affects multiple organs, including kidney, lung, and brain. In the kidney, TSC presents with the enlargement of benign tumors (angiomyolipomata) and cysts, which eventually leads to kidney failure. The factors promoting cyst formation and tumor growth in TSC are incompletely understood. Here, we report that mice with principal cell-specific inactivation of Tsc1 develop numerous cortical cysts, which are overwhelmingly composed of hyperproliferating A-intercalated (A-IC) cells. RNA sequencing and confirmatory expression studies demonstrated robust expression of Forkhead Transcription Factor 1 (Foxi1) and its downstream targets, apical H+-ATPase and cytoplasmic carbonic anhydrase 2 (CAII), in cyst epithelia in Tsc1 knockout (KO) mice but not in Pkd1 mutant mice. In addition, the electrogenic 2Cl-/H+ exchanger (CLC-5) is significantly up-regulated and shows remarkable colocalization with H+-ATPase on the apical membrane of cyst epithelia in Tsc1 KO mice. Deletion of Foxi1, which is vital to intercalated cells viability and H+-ATPase expression, completely abrogated the cyst burden in Tsc1 KO mice, as indicated by MRI images and histological analysis in kidneys of Foxi1/Tsc1 double-knockout (dKO) mice. Deletion of CAII, which is critical to H+-ATPase activation, caused significant reduction in cyst burden and increased life expectancy in CAII/Tsc1 dKO mice vs. Tsc1 KO mice. We propose that intercalated cells and their acid/base/electrolyte transport machinery (H+-ATPase/CAII/CLC-5) are critical to cystogenesis, and their inhibition or inactivation is associated with significant protection against cyst generation and/or enlargement in TSC.
Assuntos
Anidrase Carbônica II/genética , Fatores de Transcrição Forkhead/genética , Insuficiência Renal/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Animais , Cistos/genética , Cistos/patologia , Modelos Animais de Doenças , Humanos , Rim/metabolismo , Rim/patologia , Camundongos , Mutação/genética , ATPases Translocadoras de Prótons/genética , Insuficiência Renal/patologia , Canais de Cátion TRPP/genética , Esclerose TuberosaRESUMO
Tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM) are caused by aberrant mechanistic Target of Rapamycin Complex 1 (mTORC1) activation due to loss of either TSC1 or TSC2 Cytokine profiling of TSC2-deficient LAM patient-derived cells revealed striking up-regulation of Interleukin-6 (IL-6). LAM patient plasma contained increased circulating IL-6 compared with healthy controls, and TSC2-deficient cells showed up-regulation of IL-6 transcription and secretion compared to wild-type cells. IL-6 blockade repressed the proliferation and migration of TSC2-deficient cells and reduced oxygen consumption and extracellular acidification. U-13C glucose tracing revealed that IL-6 knockout reduced 3-phosphoserine and serine production in TSC2-deficient cells, implicating IL-6 in de novo serine metabolism. IL-6 knockout reduced expression of phosphoserine aminotransferase 1 (PSAT1), an essential enzyme in serine biosynthesis. Importantly, recombinant IL-6 treatment rescued PSAT1 expression in the TSC2-deficient, IL-6 knockout clones selectively and had no effect on wild-type cells. Treatment with anti-IL-6 (αIL-6) antibody similarly reduced cell proliferation and migration and reduced renal tumors in Tsc2+/- mice while reducing PSAT1 expression. These data reveal a mechanism through which IL-6 regulates serine biosynthesis, with potential relevance to the therapy of tumors with mTORC1 hyperactivity.
Assuntos
Interleucina-6/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina/metabolismo , Transaminases/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Animais , Interleucina-6/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transaminases/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/fisiologiaRESUMO
Lymphangioleiomyomatosis (LAM) is a multisystem disease occurring in women of child-bearing age manifested by uncontrolled proliferation of smooth muscle-like "LAM" cells in the lungs. LAM cells bear loss-of-function mutations in tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2, causing hyperactivation of the proliferation promoting mammalian/mechanistic target of Rapamycin complex 1 pathway. Additionally, LAM-specific active renin-angiotensin system (RAS) has been identified in LAM nodules, suggesting this system potentially contributes to neoplastic properties of LAM cells; however, the role of this renin-angiotensin signaling is unclear. Here, we report that TSC2-deficient cells are sensitive to the blockade of angiotensin II receptor type 1 (Agtr1). We show that treatment of these cells with the AGTR1 inhibitor losartan or silencing of the Agtr1 gene leads to increased cell death in vitro and attenuates tumor progression in vivo. Notably, we found the effect of Agtr1 blockade is specific to TSC2-deficient cells. Mechanistically, we demonstrate that cell death induced by Agtr1 inhibition is mediated by an increased expression of Klotho. In TSC2-deficient cells, we showed overexpression of Klotho or treatment with recombinant (soluble) Klotho mirrored the cytocidal effect of angiotensin blockade. Furthermore, Klotho treatment decreased the phosphorylation of AKT, potentially leading to this cytocidal effect. Conversely, silencing of Klotho rescued TSC2-deficient cells from cell death induced by Agtr1 inhibition. Therefore, we conclude that Agtr1 and Klotho are important for TSC2-deficient cell survival. These findings further illuminate the role of the RAS in LAM and the potential of targeting Agtr1 inhibition in TSC2-deficient cells.
Assuntos
Linfangioleiomiomatose , Esclerose Tuberosa , Animais , Humanos , Feminino , Proteína 2 do Complexo Esclerose Tuberosa/genética , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/genética , Linfangioleiomiomatose/metabolismo , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Morte Celular , Receptores de Angiotensina , MamíferosRESUMO
Lymphangioleiomyomatosis (LAM) is a rare lung disease of women, causing cystic remodelling of the lung and progressive respiratory failure. The cellular composition, microenvironment and cellular interactions within the LAM lesion remain unclear. To facilitate data sharing and collaborative LAM research, we performed an integrative analysis of single-cell data compiled from lung, uterus and kidney of patients with LAM from three research centres and developed an LAM Cell Atlas (LCA) Web-Portal. The LCA offers a variety of interactive options for investigators to search, visualise and reanalyse comprehensive single-cell multiomics data sets to reveal dysregulated genetic programmes at transcriptomic, epigenomic and cell-cell connectome levels.
Assuntos
Pneumopatias , Neoplasias Pulmonares , Linfangioleiomiomatose , Insuficiência Respiratória , Humanos , Feminino , Linfangioleiomiomatose/genética , Pneumopatias/patologia , Pulmão/patologia , Transcriptoma , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microambiente TumoralRESUMO
BACKGROUND: Biomarkers of disease progression and treatment response are urgently needed for patients with lymphangioleiomyomatosis (LAM). Activity-based nanosensors, an emerging biosensor class, detect dysregulated proteases in vivo and release a reporter to provide a urinary readout of disease. Because proteases are dysregulated in LAM and may directly contribute to lung function decline, activity-based nanosensors may enable quantitative, real-time monitoring of LAM progression and treatment response. We aimed to assess the diagnostic utility of activity-based nanosensors in a pre-clinical model of pulmonary LAM. METHODS: Tsc2-null cells were injected intravenously into female nude mice to establish a mouse model of pulmonary LAM. A library of 14 activity-based nanosensors, designed to detect proteases across multiple catalytic classes, was administered into the lungs of LAM mice and healthy controls, urine was collected, and mass spectrometry was performed to measure nanosensor cleavage products. Mice were then treated with rapamycin and monitored with activity-based nanosensors. Machine learning was performed to distinguish diseased from healthy and treated from untreated mice. RESULTS: Multiple activity-based nanosensors (PP03 (cleaved by metallo, aspartic and cysteine proteases), padjusted<0.0001; PP10 (cleaved by serine, aspartic and cysteine proteases), padjusted=0.017)) were differentially cleaved in diseased and healthy lungs, enabling strong classification with a machine learning model (area under the curve (AUC) 0.95 from healthy). Within 2â days after rapamycin initiation, we observed normalisation of PP03 and PP10 cleavage, and machine learning enabled accurate classification of treatment response (AUC 0.94 from untreated). CONCLUSIONS: Activity-based nanosensors enable noninvasive, real-time monitoring of disease burden and treatment response in a pre-clinical model of LAM.
Assuntos
Cisteína Proteases , Linfangioleiomiomatose , Animais , Cisteína Proteases/uso terapêutico , Feminino , Humanos , Linfangioleiomiomatose/tratamento farmacológico , Camundongos , Camundongos Nus , Peptídeo Hidrolases/uso terapêutico , Sirolimo/uso terapêuticoRESUMO
Lower lobe predominant pulmonary cysts occur in up to 90% of patients with Birt-Hogg-Dubé (BHD) syndrome, but the key pathologic cell type and signaling events driving this distinct phenotype remain elusive. Through examination of the LungMAP database, we found that folliculin (FLCN) is highly expressed in neonatal lung mesenchymal cells. Using RNA-Seq, we found that inactivation of Flcn in mouse embryonic fibroblasts leads to changes in multiple Wnt ligands, including a 2.8-fold decrease in Wnt2. This was associated with decreased TCF/LEF activity, a readout of canonical WNT activity, after treatment with a GSK3-α/ß inhibitor. Similarly, FLCN deficiency in HEK293T cells decreased WNT pathway activity by 76% post-GSK3-α/ß inhibition. Inactivation of FLCN in human fetal lung fibroblasts (MRC-5) led to ~ 100-fold decrease in Wnt2 expression and a 33-fold decrease in Wnt7b expression-two ligands known to be necessary for lung development. Furthermore, canonical WNT activity was decreased by 60%. Classic WNT targets such as AXIN2 and BMP4, and WNT enhanceosome members including TCF4, LEF1 and BCL9 were also decreased after GSK3-α/ß inhibition. FLCN-deficient MRC-5 cells failed to upregulate LEF1 in response to GSK3-α/ß inhibition. Finally, we found that a constitutively active ß-catenin could only partially rescue the decreased WNT activity phenotype seen in FLCN-deficient cells, whereas silencing the transcription factor TFE3 completely reversed this phenotype. In summary, our data establish FLCN as a critical regulator of the WNT pathway via TFE3 and suggest that FLCN-dependent defects in WNT pathway developmental cues may contribute to lung cyst pathogenesis in BHD.
Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Síndrome de Birt-Hogg-Dubé/genética , Perfilação da Expressão Gênica/métodos , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de RNA/métodos , Proteínas Supressoras de Tumor/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Síndrome de Birt-Hogg-Dubé/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Proteína Wnt2/genética , Proteína Wnt2/metabolismoRESUMO
BACKGROUND: Although renal cell carcinoma (RCC) is believed to have a strong hereditary component, there is a paucity of published guidelines for genetic risk assessment. A panel of experts was convened to gauge current opinions. METHODS: A North American multidisciplinary panel with expertise in hereditary RCC, including urologists, medical oncologists, clinical geneticists, genetic counselors, and patient advocates, was convened. Before the summit, a modified Delphi methodology was used to generate, review, and curate a set of consensus questions regarding RCC genetic risk assessment. Uniform consensus was defined as ≥85% agreement on particular questions. RESULTS: Thirty-three panelists, including urologists (n = 13), medical oncologists (n = 12), genetic counselors and clinical geneticists (n = 6), and patient advocates (n = 2), reviewed 53 curated consensus questions. Uniform consensus was achieved on 30 statements in specific areas that addressed for whom, what, when, and how genetic testing should be performed. Topics of consensus included the family history criteria, which should trigger further assessment, the need for risk assessment in those with bilateral or multifocal disease and/or specific histology, the utility of multigene panel testing, and acceptance of clinician-based counseling and testing by those who have experience with hereditary RCC. CONCLUSIONS: In the first ever consensus panel on RCC genetic risk assessment, 30 consensus statements were reached. Areas that require further research and discussion were also identified, with a second future meeting planned. This consensus statement may provide further guidance for clinicians when considering RCC genetic risk assessment. LAY SUMMARY: The contribution of germline genetics to the development of renal cell carcinoma (RCC) has long been recognized. However, there is a paucity of guidelines to define how and when genetic risk assessment should be performed for patients with known or suspected hereditary RCC. Without guidelines, clinicians struggle to define who requires further evaluation, when risk assessment or testing should be done, which genes should be considered, and how counseling and/or testing should be performed. To this end, a multidisciplinary panel of national experts was convened to gauge current opinion on genetic risk assessment in RCC and to enumerate a set of recommendations to guide clinicians when evaluating individuals with suspected hereditary kidney cancer.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/genética , Consenso , Testes Genéticos , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Medição de RiscoRESUMO
Chromophobe renal cell carcinoma (ChRCC) accounts for 5% of all sporadic renal cancers and can also occur in genetic syndromes including Birt-Hogg-Dube (BHD) and tuberous sclerosis complex (TSC). ChRCC has a distinct accumulation of abnormal mitochondria, accompanied by characteristic chromosomal imbalances and relatively few "driver" mutations. Metabolomic profiling of ChRCC and oncocytomas (benign renal tumors that share pathological features with ChRCC) revealed both similarities and differences between these tumor types, with principal component analysis (PCA) showing a distinct separation. ChRCC have a striking decrease in intermediates of the glutathione salvage pathway (also known as the gamma-glutamyl cycle) compared with adjacent normal kidney, as well as significant changes in glycolytic and pentose phosphate pathway intermediates. We also found that gamma glutamyl transferase 1 (GGT1), the key enzyme of the gamma-glutamyl cycle, is expressed at â¼100-fold lower levels in ChRCC compared with normal kidney, while no change in GGT1 expression was found in clear cell RCC (ccRCC). Significant differences in specific metabolite abundance were found in ChRCC vs. ccRCC, including the oxidative stress marker ophthalmate. Down-regulation of GGT1 enhanced the sensitivity to oxidative stress and treatment with buthionine sulfoximine (BSO), which was associated with changes in glutathione-pathway metabolites. These data indicate that impairment of the glutathione salvage pathway, associated with enhanced oxidative stress, may have key therapeutic implications for this rare tumor type for which there are currently no specific targeted therapies.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Renais/enzimologia , Neoplasias Renais/enzimologia , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/metabolismo , gama-Glutamiltransferase/metabolismo , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Feminino , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Proteínas de Neoplasias/genética , Oligopeptídeos/genética , Estresse Oxidativo/genética , Transdução de Sinais/genética , gama-Glutamiltransferase/genéticaRESUMO
Tuberous sclerosis complex (TSC) is an autosomal dominant disease caused by germline inactivating mutations of TSC1 or TSC2. In TSC-associated tumors of the brain, heart, skin, kidney and lung, inactivation of both alleles of TSC1 or TSC2 leads to hyperactivation of the mTORC1 pathway. The TSC/mTORC1 pathway is a key regulator of cellular processes related to growth, proliferation and autophagy. We and others have previously found that mTORC1 regulates microRNA biogenesis, but the mechanisms are not fully understood. Microprocessor, a multi-protein complex including the nuclease Drosha, processes the primary miR transcript. Using a dual-luciferase reporter, we found that inhibition of mTORC1 or downregulation of Raptor decreased Microprocessor activity, while loss of TSC2 led to a striking increase (â¼5-fold) in Microprocessor activity. To determine the global impact of TSC2 on microRNAs we quantitatively analyzed 752 microRNAs in Tsc2-expressing and Tsc2-deficient cells. Out of 259 microRNAs expressed in both cell lines, 137 were significantly upregulated and 24 were significantly downregulated in Tsc2-deficient cells, consistent with the increased Microprocessor activity. Microprocessor activity is known to be regulated in part by GSK3ß. We found that total GSK3ß levels were higher in Tsc2-deficient cells, and the increase in Microprocessor activity associated with Tsc2 loss was reversed by three different GSK3ß inhibitors. Furthermore, mTOR inhibition increased the levels of phospho-GSK3ß (S9), which negatively affects Microprocessor activity. Taken together these data reveal that TSC2 regulates microRNA biogenesis and Microprocessor activity via GSK3ß.
Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , MicroRNAs/genética , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Glicogênio Sintase Quinase 3 beta/genética , Células HeLa , Humanos , Immunoblotting , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismoRESUMO
BACKGROUND: Pulmonary cysts and spontaneous pneumothorax are presented in most patients with Birt-Hogg-Dubé (BHD) syndrome, which is caused by loss of function mutations in the folliculin (FLCN) gene. The pathogenic mechanisms underlying the cystic lung disease in BHD are poorly understood. METHODS: Mesenchymal Flcn was specifically deleted in mice or in cultured lung mesenchymal progenitor cells using a Cre/loxP approach. Dynamic changes in lung structure, cellular and molecular phenotypes and signalling were measured by histology, immunofluorescence staining and immunoblotting. RESULTS: Deletion of Flcn in mesoderm-derived mesenchymal cells results in significant reduction of postnatal alveolar growth and subsequent alveolar destruction, leading to cystic lesions. Cell proliferation and alveolar myofibroblast differentiation are inhibited in the Flcn knockout lungs, and expression of the extracellular matrix proteins Col3a1 and elastin are downregulated. Signalling pathways including mTORC1, AMP-activated protein kinase, ERK1/2 and Wnt-ß-catenin are differentially affected at different developmental stages. All the above changes have statistical significance (p<0.05). CONCLUSIONS: Mesenchymal Flcn is an essential regulator during alveolar development and maintenance, through multiple cellular and molecular mechanisms. The mesenchymal Flcn knockout mouse model provides the first in vivo disease model that may recapitulate the stages of cyst development in human BHD. These findings elucidate the developmental origins and mechanisms of lung disease in BHD.
Assuntos
Síndrome de Birt-Hogg-Dubé/metabolismo , Síndrome de Birt-Hogg-Dubé/patologia , Cistos/metabolismo , Cistos/patologia , Pneumopatias/metabolismo , Pneumopatias/patologia , Proteínas Proto-Oncogênicas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Proteínas Supressoras de Tumor/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Fenótipo , Pneumotórax/metabolismo , Pneumotórax/patologia , Transdução de SinaisRESUMO
Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant disorder caused by germline loss-of-function mutations in Folliculin gene (FLCN). BHD is characterized by lower lobe-predominant pulmonary cysts with risk of pneumothorax, benign skin tumors (fibrofolliculomas), and renal cell carcinoma, often of an unusual chromophobe/oncocytic hybrid histology. The FLCN protein functions in multiple signaling and metabolic pathways including positive regulation of mechanistic target of rapamycin complex 1 (mTORC1) activity via FLCN's GTPase (GAP) activity for Rag C, positive regulation of Wnt signaling (in mesenchymal cells), and negative regulation of TFE3 nuclear localization. Therefore, FLCN-deficient cells are predicted to have reduced mTORC1 and Wnt activity and enhanced TFE3 activity. Folliculin also has functions in autophagy, mitochondrial biogenesis, cell-cell adhesion, 5' AMP activated protein kinase activity, and other pathways. The specific contributions of these pathways to the lung manifestations of BHD are largely unknown. This review is focused on the pulmonary manifestations of BHD, highlighting selected recent advances in elucidating the cellular functions of FLCN and current hypotheses related to the pathogenesis of cystic lung disease in BHD, including the "stretch hypothesis." We also discuss important knowledge gaps in the field, including the genetic, cellular and physical mechanisms of cyst pathogenesis, and the timing of cyst initiation, which may occur during lung development.
Assuntos
Síndrome de Birt-Hogg-Dubé/genética , Cistos/etiologia , Pneumopatias/etiologia , Pneumotórax/etiologia , Animais , Síndrome de Birt-Hogg-Dubé/complicações , Síndrome de Birt-Hogg-Dubé/patologia , Cistos/patologia , Modelos Animais de Doenças , Humanos , Pneumopatias/patologia , Camundongos , Mutação , Pneumotórax/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genéticaRESUMO
A genetic influence on spontaneous pneumothoraces-those occurring without a traumatic or iatrogenic cause-is supported by several lines of evidence: 1) pneumothorax can cluster in families (i.e., familial spontaneous pneumothorax), 2) mutations in the FLCN gene have been found in both familial and sporadic cases, and 3) pneumothorax is a known complication of several genetic syndromes. Herein, we review known genetic contributions to both sporadic and familial pneumothorax. We summarize the pneumothorax-associated genetic syndromes, including Birt-Hogg-Dubé syndrome, Marfan syndrome, vascular (type IV) Ehlers-Danlos syndrome, alpha-1 antitrypsin deficiency, tuberous sclerosis complex/lymphangioleiomyomatosis, Loeys-Dietz syndrome, cystic fibrosis, homocystinuria, and cutis laxa, among others. At times, pneumothorax is their herald manifestation. These syndromes have serious potential extrapulmonary complications (e.g., malignant renal tumors in Birt-Hogg-Dubé syndrome), and surveillance and/or treatment is available for most disorders; thus, establishing a diagnosis is critical. To facilitate this, we provide an algorithm to guide the clinician in discerning which cases of spontaneous pneumothorax may have a genetic or familial contribution, which cases warrant genetic testing, and which cases should prompt an evaluation by a geneticist.
Assuntos
Síndrome de Birt-Hogg-Dubé/genética , Pneumotórax/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Predisposição Genética para Doença , Testes Genéticos , Humanos , Mutação , LinhagemRESUMO
INTRODUCTION: Lymphangioleiomyomatosis (LAM) occurs either associated with tuberous sclerosis complex (TSC) or as sporadic disease (S-LAM). Risk factors for development of S-LAM are unknown. We hypothesised that DNA sequence variants outside of TSC2/TSC1 might be associated with susceptibility for S-LAM and performed a genome-wide association study (GWAS). METHODS: Genotyped and imputed data on 5â426â936 single nucleotide polymorphisms (SNPs) in 426 S-LAM subjects were compared, using conditional logistic regression, with similar data from 852 females from COPDGene in a matched case-control design. For replication studies, genotypes for 196 non-Hispanic White female S-LAM subjects were compared with three different sets of controls. RNA sequencing and immunohistochemistry analyses were also performed. RESULTS: Two noncoding genotyped SNPs met genome-wide significance: rs4544201 and rs2006950 (p=4.2×10-8 and 6.1×10-9, respectively), which are in the same 35â kb linkage disequilibrium block on chromosome 15q26.2. This association was replicated in an independent cohort. NR2F2 (nuclear receptor subfamily 2 group F member 2), a nuclear receptor and transcription factor, was the only nearby protein-coding gene. NR2F2 expression was higher by RNA sequencing in one abdominal LAM tumour and four kidney angiomyolipomas, a LAM-related tumour, compared with all cancers from The Cancer Genome Atlas. Immunohistochemistry showed strong nuclear expression in both LAM and angiomyolipoma tumours. CONCLUSIONS: SNPs on chromosome 15q26.2 are associated with S-LAM, and chromatin and expression data suggest that this association may occur through effects on NR2F2 expression, which potentially plays an important role in S-LAM development.