Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Mol Biol Rep ; 51(1): 305, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38361124

RESUMO

BACKGROUND: Pectolinarigenin (PEC) is a flavone extracted from Cirsium, and because it has anti-inflammatory properties, anti-cancer research is also being conducted. The objective of this work was to find out if PEC is involved in tumor control and which pathways it regulates in vivo and in vitro. METHODS: AGS cell lines were xenografted into BALB/c nude mice to create tumors, and PEC was administered intraperitoneally to see if it was involved in tumor control. Once animal testing was completed, tumor proteins were isolated and identified using LC-MS analysis, and gene ontology of the found proteins was performed. RESULTS: Body weight and hematological measurements on the xenograft mice model demonstrated that PEC was not harmful to non-cancerous cells. We found 582 proteins in tumor tissue linked to biological reactions such as carcinogenesis and cell death signaling. PEC regulated 6 out of 582 proteins in vivo and in vitro in the same way. CONCLUSION: Our findings suggested that PEC therapy may inhibit tumor development in gastric cancer (GC), and proteomic research gives fundamental information about proteins that may have great promise as new therapeutic targets in GC.


Assuntos
Apoptose , Cromonas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Camundongos Nus , Xenoenxertos , Proteômica , Linhagem Celular Tumoral , Neoplasias Gástricas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células
2.
Ecotoxicol Environ Saf ; 281: 116598, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896897

RESUMO

Bisphenol AF (BPAF) is found in high concentrations in aquatic environments due to the increased use of thermal paper and food packaging. However, there have been relatively few toxicological studies and potential risk assessments of BPAF. In this study, the risk quotient (RQ) and hazard quotient (HQ) of BPAF were derived to present the safety standards for environmental risk management and protection in lakes, rivers, bays, and Italian regions. We applied the species sensitivity distribution (SSD) method based on the previous ecotoxicological data and the results of supplementary toxicity tests on BPAF. From the SSD curves, the hazardous concentration for 5 % of the species (HC5) values for the acute and chronic toxicity data were 464.75 µg/L and 3.59 µg/L, respectively, and the acute- and chronic-based predicted no-effect concentration were derived as 154.92 µg/L and 1.20 µg/L, respectively. The acute-based RQ (RQA)values of BPAF in all regions were negligible (RQ < 0.1). The chronic-based RQ (RQC) in the Xitang River (XR) and the Central Italy (CI) showed a considerably high ecological risk (12.77 and 1.29) and the Hangzhou Bay (0.21), the South and North Italy (0.79 and 0.27), and the Tamagawa River (0.13) had a medium ecological risk (0.1 < RQ < 1.0). However, the HQ values based on the tolerable daily intake for BPAF over all age groups in these regions was < 0.1, indicating the low health risk. Nonetheless, the result of this study indicates that BPAF contamination is serious in XR and CI, and their use and emissions require continuous monitoring.


Assuntos
Compostos Benzidrílicos , Monitoramento Ambiental , Fenóis , Poluentes Químicos da Água , Medição de Risco , Fenóis/toxicidade , Fenóis/análise , Compostos Benzidrílicos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Itália , Humanos , Monitoramento Ambiental/métodos , Animais , Rios/química , Adulto , Criança , Exposição Ambiental , Fluorocarbonos
3.
Gynecol Endocrinol ; 39(1): 2247094, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37599578

RESUMO

OBJECTIVE: To evaluate the effects of various initiation time points and durations of hormone therapy (HT) on cardiovascular and metabolic parameters of premenarche, primary ovarian insufficiency (POI) mouse model, induced by 4-vinylcyclohexene diepoxide. METHODS: A total of 50 mice at 4 weeks of age were developed into POI mouse model, further randomly categorized into 5 groups: control group without any intervention; no HT group with only high-fat diet (NT); group 1 with delayed estradiol treatment (T1); group 2 with on-time, continuous estradiol treatment (T2); and group 3 with on-time estradiol treatment but early stop (T3). Cardiovascular risk and metabolic parameters were measured. RESULTS: Presenting with similar body weights, blood glucose levels of T1, T2, and T3 were all significantly lower than NT (p < .001). Serum total cholesterol and insulin were also significantly lower in all HT groups than in NT, especially in T2 (p < .001). For serum low-density lipoprotein-cholesterol, only T2 resulted in the statically lower level than those of NT, T1, and T3 (p < .001). Aortic thickness was significantly increased with aggravated fibrotic change of the intima in NT, and such consequence was significantly ameliorated in HT groups, mostly lowered in T2 (p < .05). Last, serum pro-inflammatory cytokines were significantly low in the HT groups than in NT, especially in T2 with the lowest level (p < .05). . CONCLUSIONS: On-time, continuous E2 treatment immediately after a biologic estrogen deprivation event significantly reduced metabolic and cardiovascular risks in young, pre-menarche female mouse models of POI, confirming decreased serum levels of pro-inflammatory cytokines.


Assuntos
Doenças Cardiovasculares , Insuficiência Ovariana Primária , Feminino , Animais , Camundongos , Humanos , Doenças Cardiovasculares/etiologia , Insuficiência Ovariana Primária/induzido quimicamente , Fatores de Risco , Fatores de Risco de Doenças Cardíacas , Citocinas , Modelos Animais de Doenças , Estradiol , Colesterol
4.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298192

RESUMO

Cancer is a widespread but dangerous disease that can strike anyone and is the second 1leading cause of death worldwide. Prostate cancer, in particular, is a prevalent cancer that occurs in men, and much research is being done on its treatment. Although chemical drugs are effective, they have various side effects, and accordingly, anticancer drugs using natural products are emerging. To date, many natural candidates have been discovered, and new drugs are being developed as drugs to treat prostate cancer. Representative candidate compounds that have been studied to be effective in prostate cancer include apigenin, acacetin and tangeretin of the flavone family among flavonoids. In this review, we look at the effects of these three flavones on prostate cancer cells via apoptosis in vitro and in vivo. Furthermore, in addition to the existing drugs, we suggest the three flavones and their effectiveness as natural anticancer agents, a treatment model for prostate cancer.


Assuntos
Antineoplásicos , Flavonas , Neoplasias da Próstata , Masculino , Humanos , Flavonas/farmacologia , Flavonas/química , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Apoptose , Apigenina/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico
5.
Drug Chem Toxicol ; 45(3): 1088-1097, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32815395

RESUMO

The present study investigated the potential adverse effects of aluminum chloride (AlCl3) following a 4-week repeated oral administration in Sprague-Dawley rats. The test article was administered once daily by gavage to male and female rats at dose levels of 0, 100, 300, and 900 mg/kg/day for 4 weeks. After administration of AlCl3 at 900 mg/kg/day, treatment-related systemic toxicity manifested as significant increases in salivation incidence, neutrophil percentage, reticulocytes, serum triglyceride, adrenal gland and liver weights, and single-hepatocyte necrosis, as well as significant decreases in body weight gain, food intake, hemoglobin, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration (MCHC), lymphocyte percentage, serum total protein and albumin, and thymus weight in male rats; and significant increases in salivation incidence, serum triglyceride, and liver weight, as well as a significant decrease in lymphocyte percentage in female rats. At 300 mg/kg/day, a significant decrease in MCHC was found in male rats, but not in female rats. However, this finding was not toxicologically significant because the reduction was minimal and was not accompanied by changes in any other parameters. No treatment-related effects were observed in the 100 mg/kg/day group of both genders. Under the experimental conditions of this study, the target organs of AlCl3 were determined to be the blood, liver, and thymus in rats. The no-observed-adverse-effect level was found to be 300 mg/kg/day in rats of both genders.


Assuntos
Fígado , Administração Oral , Cloreto de Alumínio/toxicidade , Animais , Feminino , Masculino , Nível de Efeito Adverso não Observado , Ratos , Ratos Sprague-Dawley , Triglicerídeos
6.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012164

RESUMO

Kynurenic acid was included in the three compounds (caffeic acid, chlorogenic acid, and kynurenic acid) that showed high antioxidant and anti-inflammatory potential among the phenolic compounds contained in Gynura procumbens. In this study, the mechanism of cancer cell death induced by kynurenic acid (KYNA), which has the highest molecular binding affinity, in the gastric cancer cell line AGS was confirmed in molecular docking analysis. KYNA showed the most cancer cell death effect on AGS cells among several gastric cancer cell lines (MKN, AGS, and SNU). AGS cells were used for later experiments, and KYNA concentrations of 0, 150, 200, and 250 µM were used. KYNA inhibited cell migration and proliferation in AGS cells in a concentration-dependent manner. G2/M phase cell cycle arrest and reduction of related proteins (Cdc25C, CDK1 and CyclinB1) were confirmed in KYNA-treated AGS cells. Apoptosis of KYNA-treated AGS cells was confirmed by Annexin V/propidium iodide (PI) staining flow cytometry analysis. As a result of morphological chromatin condensation through DAPI (4',6-diamidino-2-phenylindole), intense blue fluorescence was confirmed. The mechanism of apoptosis induction of KYNA-treated AGS cells was confirmed by western blotting. In the extrinsic pathway, apoptosis induction markers FasL, Fas, and Caspase-3 and -8 were increased in a concentration-dependent manner upon KYNA treatment. In the intrinsic pathway, the expression of anti-apoptotic factors PI3K, AKT, and Bcl-xL was down-regulated, and the expression of apoptosis-inducing factors BAD, Bak, Bax, Cytochrom C, and Caspase-9 was up-regulated. Therefore, in the present study, we strongly imply that KYNA induces apoptosis in AGS gastric cancer cells. This suggests that KYNA, a natural compound, could be the basis for drug for the treatment of gastric cancer.


Assuntos
Neoplasias Gástricas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Ácido Cinurênico/farmacologia , Ácido Cinurênico/uso terapêutico , Simulação de Acoplamento Molecular , Neoplasias Gástricas/metabolismo
7.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142874

RESUMO

Cancer is a horrific disease that, to date, has no cure. It is caused by various factors and takes many lives. Apoptosis is a programmed cell death mechanism and if it does not function correctly in cancer cells, it can lead to severe disease. There are various signaling pathways for regulating apoptosis in cancer cells. Flavonoids are non-artificial natural bioactive compounds that are gaining attention as being capable of for inducing apoptosis in cancer cells. Among these, in this study, we focus on flavones. Flavones are a subclass of the numerous available flavonoids and possess several bioactive functions. Some of the most reported and well-known critical flavones, namely apigenin, acacetin, baicalein, luteolin, tangeretin, and wogonin, are discussed in depth in this review. Our main aim is to investigate the effects of the selected flavones on apoptosis and cell signaling pathways that contribute to death due to various types of cancers.


Assuntos
Flavonas , Neoplasias , Apigenina/farmacologia , Apoptose , Flavonas/farmacologia , Flavonoides/farmacologia , Humanos , Luteolina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais
8.
Molecules ; 27(12)2022 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-35744907

RESUMO

Inflammation is a severe topic in the immune system and play a role as pro-inflammatory mediators. In response to such inflammatory substances, immune cells release cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). Lipopolysaccharide (LPS) is known as an endotoxin in the outer membrane of Gram-negative bacteria, and it catalyzes inflammation by stimulating the secretion of inflammatory-mediated cytokines such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) by stimulated immune cells. Among the pathways involved in inflammation, nuclear factor kappa (NF-кB) and mitogen-activated protein kinases (MAPKs) are important. NF-kB is a diploid composed of p65 and IkBα and stimulates the pro- gene. MAPKs is a family consisting of the extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38, JNK and p38 play a role as proinflammatory mediators. Thus, we aim to determine the scutellarein (SCU) effect on LPS stimulated RAW264.7 cells. Furthermore, since scutellarein has been shown to inhibit the SARS coronavirus helicase and has been used in Chinese medicine to treat inflammatory disorders like COVID-19, it would be required to examine scutellarein's anti-inflammatory mechanism. We identified inflammation-inducing substances using western blot with RAW264.7 cells and SCU. And we discovered that was reduced by treatment with SCU in p-p65 and p-IκBα. Also, we found that p-JNK and p-ERK were also decreased but there was no effect in p-p38. In addition, we have confirmed that the iNOS was also decreased after treatment but there is no change in the expression of COX-2. Therefore, this study shows that SCU can be used as a compound to treat inflammation.


Assuntos
COVID-19 , NF-kappa B , Animais , Apigenina , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Transdução de Sinais
9.
Molecules ; 27(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36014455

RESUMO

Cadmium (Cd), a harmful heavy metal, can lead to various pulmonary diseases, including chronic obstructive pulmonary disease (COPD), by inducing cytotoxicity and disturbing redox homeostasis. The aim of the present study was to investigate Cd-mediated cytotoxicity using human lung fibroblasts and the therapeutic potential of 3,3'-diindolylmethane (DIM). Cadmium significantly reduced the cell viability of human embryonic lung (HEL299) cells accompanied by enhanced oxidative stress as evidenced by the increased expression of autophagy-related proteins such as LC3B and p62. However, treatment with DIM significantly suppressed autophagic cell death in Cd-induced HEL299 fibroblasts. In addition, DIM induced antioxidant enzyme activity and decreased intracellular reactive oxygen species (ROS) levels in Cd-damaged HEL299 cells. This study suggests that DIM effectively suppressed Cd-induced lung fibroblast cell death through the upregulation of antioxidant systems and represents a potential agent for the prevention of various diseases related to Cd exposure.


Assuntos
Morte Celular Autofágica , Cádmio , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Autofagia , Cádmio/toxicidade , Fibroblastos/metabolismo , Humanos , Indóis , Pulmão/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Environ Health Res ; 32(1): 131-140, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32191530

RESUMO

The toxicity of cadmium (Cd) occurs through accumulation in the environment. The precise mechanism underlying Cd toxicity remains unclear. Therefore, in the present study, we studied the effects of Cd on MM55.K cells and investigated the mechanisms underlying Cd-induced cell death. CdCl2 significantly elevated apoptotic cell death, mitochondrial membrane potential (ΔΨm) loss, and caspase-dependent cell death. Moreover, immunoblotting results revealed that CdCl2 down-regulated the inhibitor of apoptotic protein such as survivin and Bcl-2 which led to the activation of caspase-3 and the cleavage of PARP in MM55.K cells. Besides, CdCl2 caused the up-regulation of ROS-related proteins such as HO-1 and ER stress-related proteins such as GRP78 and CHOP in MM55.K cells. CdCl2 toxicity resulted in the down-regulation of the AKT pathway that leads to the up-regulation of phosphorylated JNK and p38 in MM55.K cells. Thus, CdCl2 induce toxicity by AKT/MAPK regulation and causing ROS production, ER stress, ΔΨm loss, and apoptotic cell death in normal mouse renal cells.


Assuntos
Cádmio , Mitocôndrias , Animais , Apoptose , Cádmio/toxicidade , Chaperona BiP do Retículo Endoplasmático , Camundongos , Espécies Reativas de Oxigênio
11.
Mar Drugs ; 19(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809895

RESUMO

By activity-guided fractionation based on inhibition of nitric oxide (NO) and prostaglandin E2 (PGE2), six fistularin compounds (1-6) were isolated from the marine sponge Ecionemia acervus (order Astrophorida). Based on stereochemical structure determination using Mosher's method, fistularin-3 was assigned as a new stereoisomer. On the basis of the stereochemistry of fistularin-3, the stereochemical homogeneity of all six compounds was established by comparing carbon and proton chemical shifts. For fistularin-1 (1) and -2 (2), quantum calculations were performed to confirm their stereochemistry. In a co-culture system of human epithelial Caco-2 cells and THP-1 macrophages, all six isolated compounds showed potent anti-inflammatory activities. These bioactive fistularins inhibited the production of NO, PGE2, TNF-α, IL-1ß, and IL-6 induced by lipopolysaccharide and interferon gamma. Inducible NO synthase and cyclooxygenase-2 expression and MAPK phosphorylation were downregulated in response to the inhibition of NF-κB nuclear translocation. Among the compounds tested, fistularin-1 (1) and 19-deoxyfistularin-3 (4) showed the highest activity. These findings suggest the potential use of the marine sponge E. acervus and its metabolites as pharmaceuticals for the treatment of inflammation-related diseases including inflammatory bowel disease.


Assuntos
Anti-Inflamatórios/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Isoxazóis/farmacologia , Poríferos/metabolismo , Tirosina/análogos & derivados , Animais , Anti-Inflamatórios/isolamento & purificação , Células CACO-2 , Técnicas de Cocultura , Citocinas/metabolismo , Dinoprostona/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Isoxazóis/isolamento & purificação , Estrutura Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Estereoisomerismo , Relação Estrutura-Atividade , Células THP-1 , Tirosina/isolamento & purificação , Tirosina/farmacologia
12.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576095

RESUMO

Titanium dioxide nanoparticles (TiO2NPs) are widely used in industrial and medicinal fields and in various consumer products, and their increasing use has led to an increase in the number of toxicity studies; however, studies investigating the underlying toxicity mechanism have been rare. In this study, we evaluated potential toxic effects of TiO2NPs exposure on lungs as well as the development of asthma through the ovalbumin (OVA)-induced mouse model of asthma. Furthermore, we also investigated the associated toxic mechanism. TiO2NPs caused pulmonary toxicity by exacerbating the inflammatory response, indicated by an increase in the number and level of inflammatory cells and mediators, respectively. OVA-induced asthma exposed mice to TiO2NPs led to significant increases in inflammatory mediators, cytokines, and airway hyperresponsiveness compared with those in non-exposed asthmatic mice. This was also accompanied by increased inflammatory cell infiltration and mucus production in the lung tissues. Additionally, TiO2NPs decreased the expression of B-cell lymphoma 2 (Bcl2) and the expressions of thioredoxin-interacting protein (TXNIP), phospho-apoptosis signal-regulating kinase 1, Bcl2-associated X, and cleaved-caspase 3 were escalated in the lungs of asthmatic mice compared with those in non-exposed asthmatic mice. These responses were consistent with in vitro results obtained using human airway epithelial cells. TiO2NPs treated cells exhibited an increase in the mRNA and protein expression of interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α with an elevation of TXNIP signaling compared to non-treated cells. Moreover, pathophysiological changes induced by TiO2NP treatment were significantly decreased by TXNIP knockdown in airway epithelial cells. Overall, TiO2NP exposure induced toxicological changes in the respiratory tract and exacerbated the development of asthma via activation of the TXNIP-apoptosis pathway. These results provide insights into the underlying mechanism of TiO2NP-mediated respiratory toxicity.


Assuntos
Asma/patologia , Proteínas de Transporte/genética , Hipersensibilidade/patologia , Inflamação/patologia , Pulmão/patologia , Nanopartículas/toxicidade , Tiorredoxinas/genética , Titânio/toxicidade , Regulação para Cima/genética , Animais , Apoptose , Asma/sangue , Asma/complicações , Asma/genética , Líquido da Lavagem Broncoalveolar , Proteínas de Transporte/metabolismo , Caspase 3/metabolismo , Contagem de Células , Linhagem Celular , Fenômenos Químicos , Citocinas/biossíntese , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipersensibilidade/sangue , Hipersensibilidade/complicações , Hipersensibilidade/genética , Imunoglobulina E/sangue , Inflamação/sangue , Inflamação/genética , Mediadores da Inflamação/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Muco/metabolismo , Nanopartículas/ultraestrutura , Ovalbumina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hipersensibilidade Respiratória/complicações , Tiorredoxinas/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
13.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445559

RESUMO

Scutellarein (SCU) is a well-known flavone with a broad range of biological activities against several cancers. Human hepatocellular carcinoma (HCC) is major cancer type due to its poor prognosis even after treatment with chemotherapeutic drugs, which causes a variety of side effects in patients. Therefore, efforts have been made to develop effective biomarkers in the treatment of HCC in order to improve therapeutic outcomes using natural based agents. The current study used SCU as a treatment approach against HCC using the HepG2 cell line. Based on the cell viability assessment up to a 200 µM concentration of SCU, three low-toxic concentrations of (25, 50, and 100) µM were adopted for further investigation. SCU induced cell cycle arrest at the G2/M phase and inhibited cell migration and proliferation in HepG2 cells in a dose-dependent manner. Furthermore, increased PTEN expression by SCU led to the subsequent downregulation of PI3K/Akt/NF-κB signaling pathway related proteins. In addition, SCU regulated the metastasis with EMT and migration-related proteins in HepG2 cells. In summary, SCU inhibits cell proliferation and metastasis in HepG2 cells through PI3K/Akt/NF-κB signaling by upregulation of PTEN, suggesting that SCU might be used as a potential agent for HCC therapy.


Assuntos
Apigenina/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , NF-kappa B/genética , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células Tumorais Cultivadas
14.
Molecules ; 26(20)2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34684681

RESUMO

Bisphenol A (BPA) is a typical environmental endocrine disruptor that exhibits estrogen-mimicking, hormone-like properties and can cause the collapse of bone homeostasis by an imbalance between osteoblasts and osteoclasts. Various BPA substitutes, structurally similar to BPA, have been used to manufacture 'BPA-free' products; however, the regulatory role of BPA alternatives in osteoclast differentiation still remains unelucidated. This study aimed to investigate the effects of these chemicals on osteoclast differentiation using the mouse osteoclast precursor cell line RAW 264.7. Results confirmed that both BPA and its alternatives, bisphenol F and tetramethyl bisphenol F (TMBPF), were nontoxic to RAW 264.7 cells. In particular, tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cell staining and activity calculation assays revealed that TMBPF enhanced osteoclast differentiation upon stimulation of the receptor activator of nuclear factor-kappa B ligand (RANKL). Additionally, TMBPF activated the mRNA expression of osteoclast-related target genes, such as the nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CtsK). Western blotting analysis indicated activation of the mitogen-activated protein kinase signaling pathway, including phosphorylation of c-Jun N-terminal kinase and p38. Together, the results suggest that TMBPF enhances osteoclast differentiation, and it is critical for bone homeostasis and skeletal health.


Assuntos
Compostos Benzidrílicos/farmacologia , Estrogênios não Esteroides/farmacologia , Osteoblastos/efeitos dos fármacos , Fenóis/farmacologia , Animais , Reabsorção Óssea , Diferenciação Celular/efeitos dos fármacos , Estrogênios/análogos & derivados , Estrogênios/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
15.
Molecules ; 26(9)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068568

RESUMO

Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide staining. Iridin also increased the expression of extrinsic apoptotic pathway proteins like Fas, FasL, and cleaved Caspase-8 in AGS cells. On the contrary, iridin-treated AGS cells did not show variations in proteins related to an intrinsic apoptotic pathway such as Bax and Bcl-xL. Besides, Iridin showed inhibition of PI3K/AKT signaling pathways by downregulation of (p-PI3K, p-AKT) proteins in AGS cells. In conclusion, these data suggest that iridin has anticancer potential by inhibiting PI3K/AKT pathway. It could be a basis for further drug design in gastric cancer treatment.


Assuntos
Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/química , Humanos , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Regul Toxicol Pharmacol ; 112: 104618, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32087352

RESUMO

Silica dioxide nanoparticles (SiONPs) are mainly used in the rubber industry; however, they are a major air pollutant in Asia. Thus, extensive research on this issue is required. In this study, we investigated the effects of SiONPs on asthma aggravation and elucidated the underlying mechanism using ovalbumin (OVA)-induced asthmatic mice model and in NCI-H292 cells. Mice exposed to SiONPs showed markedly increased Penh values, inflammatory cell counts, and inflammatory cytokine levels compared to OVA-induced asthmatic mice. Exposure to SiONPs also induced additional airway inflammation and mucus secretion with increases in protein expression levels of thioredoxin-interacting protein (TXNIP), NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, and interleukin (IL)-1ß compared to those in OVA-induced asthmatic mice. Treatment of SiONPs in NCI-H292 cells also significantly increased mRNA expression levels of inflammatory cytokines accompanied with elevation in the levels of TXNIP, NLRP3 inflammasome, and IL-1ß proteins in a concentration-dependent manner. Taken together, exposure to SiONPs aggravated asthma development, which is closely related to inflammasome activation. Our results provide useful information about the toxicological effects of SiONPs on asthma exacerbation and suggest the need to avoid SiONP exposure especially in individuals with respiratory diseases.


Assuntos
Asma/metabolismo , Modelos Animais de Doenças , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nanopartículas/química , Dióxido de Silício/metabolismo , Animais , Asma/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Endogâmicos BALB C , Sistema Respiratório/metabolismo , Dióxido de Silício/química
17.
Mar Drugs ; 17(11)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717394

RESUMO

The inflammatory bowel diseases (IBD) cause chronic inflammation of the gastrointestinal tract and include ulcerative colitis (UC) and Crohn's disease (CD). The prevalence of IBD has been increasing worldwide, and has sometimes led to irreversible impairment of gastrointestinal structure and function. In the present study, we successfully isolated a new phylloketal derivative, deacetylphylloketal (1) along with four known compounds from the sponge genus Phyllospongia. The anti-inflammatory properties of deacetylphylloketal (1) and phyllohemiketal A (2) were evaluated using an in vitro co-culture system that resembles the intestinal epithelial environment. A co-culture system was established that consisted of human epithelial Caco-2 cells and phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 macrophage cells. The treatment of co-cultured THP-1 cells with compounds 1 or 2 significantly suppressed the production and/or gene expression of lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E2 (PGE2), Interleukin-6 (IL-6), IL-1ß and Tumor Necrosis Factor alpha (TNF-α). The expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 were down-regulated in response to inhibition of NF-kB translocation into the nucleus in cells. In addition, we observed that 1 and 2 markedly promoted the nuclear translocation of Nrf2 and subsequent increase in the expression of heme oxygernase (HO)-1. These findings suggest the potential use of sponge genus Phyllospongia and its metabolites as a pharmaceutical aid in the treatment of inflammation-related diseases including IBD.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Poríferos/química , Sesterterpenos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Células CACO-2 , Linhagem Celular , Técnicas de Cocultura , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Lipopolissacarídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Sesterterpenos/isolamento & purificação
18.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31575035

RESUMO

Membrane-free stem cell components (MFSCC) from basal adipose tissue-derived stem cells (ADSCs) are unknown for the treatment strategies in osteoarthritis (OA). OA has been considered to be associated with inflammatory damage and cartilage degradation. In this study, we intended to investigate the molecular mechanism of the anti-inflammation and cartilage protection effect of MFSCC in vitro (rat primary chondrocytes) and in vivo (rat OA model). The MFSCC treatment significantly inhibited interleukin-1α (IL-1α) stimulated inflammation and cartilage degradation. The MFSCC considerably reduced the levels of inflammatory factors such as iNOS, COX-2, NO, and PGE2 and was suppressed NF-κB and MAPKs signaling pathways in IL-1α-stimulated rat chondrocytes. Additionally, biomarkers of OA such as MMP-9, COMP, and CTX-II decreased in the monosodium iodoacetate (MIA)-induced rat OA model by MFSCC treatment. In conclusion, the MFSCC was established to suppress IL-1α induced inflammation and cartilage degradation in vitro and in vivo. These findings provide new insight for understanding OA therapy using membrane-free stem cell approaches.


Assuntos
Cartilagem Hialina/metabolismo , Interleucina-1alfa/metabolismo , Osteoartrite/etiologia , Osteoartrite/metabolismo , Células-Tronco/metabolismo , Animais , Biomarcadores , Condrócitos/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/patologia , Ratos
19.
Molecules ; 24(18)2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31540496

RESUMO

Crohn's disease (CD) and ulcerative colitis (UC), collectively referred to as inflammatory bowel disease (IBD), are autoimmune diseases characterized by chronic inflammation within the gastrointestinal tract. Debromohymenialdisine is an active pyrrole alkaloid that is well known to serve as a stable and effective inhibitor of Chk2. In the present study, we attempted to investigate the anti-inflammatory properties of (10Z)-debromohymenialdisine (1) isolated from marine sponge Stylissa species using an intestinal in vitro model with a transwell co-culture system. The treatment with 1 attenuated the production and gene expression of lipopolysaccharide (LPS)-induced Interleukin (IL)-6, IL-1ß, prostaglandin E2 (PGE2), and tumor necrosis factor-α in co-cultured THP-1 macrophages at a concentration range of 1-5 µM. The protein expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were down-regulated in response to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) translocation into the nucleus in cells. In addition, we observed that 1 markedly promoted the nuclear translocation of nuclear factor erythroid 2 related factor 2 (Nrf2) and subsequent increase of heme oxygenase-1 (HO-1) expression. These findings suggest the potential use of 1 as a pharmaceutical lead in the treatment of inflammation-related diseases including IBD.


Assuntos
Organismos Aquáticos/química , Azepinas/farmacologia , Colite Ulcerativa , Doença de Crohn , Intestinos/patologia , Poríferos/química , Pirróis/farmacologia , Animais , Azepinas/química , Células CACO-2 , Técnicas de Cocultura , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Dinoprostona/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Pirróis/química , Células THP-1
20.
Biol Pharm Bull ; 40(11): 1856-1865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29093332

RESUMO

Halophyte Limonium tetragonum has recently been of interest in Korea for its nutritional value and salty taste which made it an ideal vegetable. In this study, the potential of L. tetragonum preventing excess weight gain, obesity and the related health problem has been evaluated in vitro and in vivo. The treatment with 100 mg/kg of L. tetragonum EtOAc soluble fraction (EALT) apparently prevented the body weight gain, adipose tissue weight gain, and the increase of triglyceride and total cholesterol level in mice fed a high-fat diet for 8 weeks. In addition, both glucose tolerance and insulin resistance in dietary obese mice were improved by EALT administration. A marked decrease in adipocyte differentiation was observed in the EALT (50 µg/mL)-treated 3T3-L1 cells, which was mediated by the suppression of adipogenesis-related transcription factors including peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (C/EBP)α, and Sterol regulatory element binding protein-1 (SREBP-1) and adipocyte-specific proteins such as fatty acid synthase (FAS), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein (aP2). The major components contained in EALT were identified as (-)-epigallocatechin-3-(3″-O-methyl) gallate, (-)-epigallocatechin-3-gallate, and myricetin-3-O-ß-D-galactopyranoside based on its phytochemical analysis. Results suggested that EALT might be available as functional crop and bioactive diet supplement for the prevention and/or treatment of obesity.


Assuntos
Adipogenia/efeitos dos fármacos , Fármacos Antiobesidade/uso terapêutico , Obesidade/prevenção & controle , Extratos Vegetais/uso terapêutico , Plumbaginaceae/química , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Glicemia , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/sangue , Obesidade/etiologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , República da Coreia , Triglicerídeos/sangue , Aumento de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA