RESUMO
In LNCaP cells that stably express α1A-adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α1A-Adrenergic receptor interaction with ß-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α1A-adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α1A-AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined.
Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteólise , Receptores Adrenérgicos alfa 1/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Espectrometria de Massas , Norepinefrina/farmacologia , Oximetazolina/farmacologia , Fosforilação/genética , Proteína Quinase C/genética , Receptores Adrenérgicos alfa 1/metabolismo , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Adrenaline and noradrenaline bind to membrane receptors of the superfamily of G protein-coupled receptors (GPCR) in target cells, where they modulate physiological responses such as metabolism, vasoconstriction, vasodilation and proliferation. Alteration in their function is associated with conditions such as hypertension, benign prostatic hyperplasia and cardiac hypertrophy. In response to adrenaline, receptors form signaling complexes, which enables adrenergic action to be specific, rapid and efficient. These signaling complexes or signalosomes are composed of kinases, phosphatases, and adapter and scaffold proteins, which together modulate the receptor function. Manipulation of each protein-protein interaction of the adrenergic signaling complex emerges as a promising therapeutic strategy for the design of drugs that modulate adrenergic action and help to define its pathophysiological significance. An important biological model to perform these investigations is the heart, since it expresses all adrenergic receptors; to date, several heart signalosomes have been described. Mass spectrometry (proteomics), genetic manipulation and biochemical assays, such as two-hybrid and co-immunoprecipitation assays, are tools that are used in these studies.
La adrenalina y la noradrenalina se unen a receptores membranales de la superfamilia de receptores acoplados a proteínas G (GPCR) en las células blanco, donde modulan respuestas fisiológicas tales como el metabolismo, vasoconstricción, vasodilatación y proliferación. La alteración en su función está asociada con hipertensión, hiperplasia prostática benigna e hipertrofia cardiaca. En respuesta a la adrenalina, los receptores forman complejos de señalización, lo que permite que la acción adrenérgica sea específica, rápida y eficiente. Estos complejos de señalización o signalosomas están integrados por cinasas, fosfatasas, proteínas adaptadoras y de andamio, que en conjunto modulan la función del receptor. La manipulación de cada interacción proteína-proteína del complejo de señalización adrenérgico emerge como una estrategia terapéutica prometedora para el diseño de fármacos que modulen la acción adrenérgica y ayuden a definir su significado fisiopatológico. Un modelo biológico importante para realizar estos estudios es el corazón, ya que expresa todos los receptores adrenérgicos; en la actualidad se han descrito varios signalosomas cardiacos. La espectrometría de masas (proteómica), manipulación genética y ensayos bioquímicos como el doble híbrido o la coinmunoprecipitación son herramientas que se emplean en estos estudios.
Assuntos
Epinefrina/fisiologia , Norepinefrina/fisiologia , Receptores Adrenérgicos/fisiologia , Transdução de Sinais/fisiologia , Humanos , Receptores Adrenérgicos/classificação , Receptores Acoplados a Proteínas G/fisiologiaRESUMO
FFA1 (previously known as GPR40) is a free fatty acid receptor involved in the regulation of inflammatory processes and insulin secretion. The cellular actions resulting from FFA1 activation have received considerable attention. However, little is known on the regulation of the receptor function. In the present work, using cells transfected with this receptor, docosahexaenoic acid and α-linolenic acid increased intracellular calcium concentration and ERK 1/2 phosphorylation. It was also observed that FFA1 is a phosphoprotein whose phosphorylation state was increased (2- to 3-fold) by agonists (i.e., free fatty acids) and also by phorbol myristate acetate. Agonist- and phorbol ester-mediated FFA1 phosphorylation was markedly reduced by inhibitors of protein kinase C. Receptor stimulation by free fatty acids and protein kinase C activation also induced receptor internalization as evidenced by confocal microscopy. In summary, our data show that FFA1 is a phosphoprotein whose phosphorylation state is modulated by agonists and protein kinase C activation; such covalent modification is associated with receptor internalization.
Assuntos
Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Cálcio/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ácido alfa-Linolênico/farmacologiaRESUMO
RESULTS: The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1-3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1-3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. CONCLUSION: Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes.
Assuntos
Lisofosfolipídeos/farmacologia , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Linhagem Celular , Receptores ErbB/metabolismo , Humanos , Fosforilação/efeitos dos fármacos , Proteína Quinase C/farmacologia , Transporte Proteico , Ratos , Acetato de Tetradecanoilforbol/farmacologiaRESUMO
Phosphoinositide-dependent protein kinase 1 (PDK1) is a key enzyme, master regulator of cellular proliferation and metabolism; it is considered a key target for pharmacological intervention. Using membranes obtained from DDT1 MF-2 cells, phospho-PDK1 was identified by Western blotting, as two major protein bands of Mr 58-68 kDa. Cell incubation with the PDK1 inhibitor, UCN-01, induced a time- and concentration-dependent decrease in the amount of phospho-PDK1 with a concomitant appearance of a ≈42 kDa phosphorylated fragment. Knocking down PDK1 diminished the amount of phospho-PDK1 detected in membranes, accompanied by similarly decreased fragment generation. UCN-01-induced fragment generation was also observed in membranes from cells stably expressing a myc-tagged PDK1 construct. Other PDK1 inhibitors were also tested: OSU-03012 induced a clear decrease in phospho-PDK1 and increased the presence of the phosphorylated fragment in membrane preparations; in contrast, GSK2334470 and staurosporine induced only marginal increases in the amount of PDK1 fragment. Galardin and batimastat, two metalloproteinase inhibitors, markedly attenuated inhibitor-induced PDK1 fragment generation. Metalloproteinases 2, 3, and 9 co-immunoprecipitated with myc-PDK1 under baseline conditions and this interaction was stimulated by UCN-01; batimastat also markedly diminished this effect of the PDK1 inhibitor. Our results indicate that a series of protein kinase inhibitors, namely UCN-01 and OSU-03012 and to a lesser extent GSK2334470 and staurosporine induce PDK1 fragmentation and suggest that metalloproteinases could participate in this effect.
Assuntos
Antineoplásicos/farmacologia , Metaloproteases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estaurosporina/análogos & derivados , Animais , Linhagem Celular Tumoral , Cricetinae , Indazóis/farmacologia , Proteínas Serina-Treonina Quinases/genética , Pirazóis/farmacologia , Pirimidinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Estaurosporina/farmacologia , Sulfonamidas/farmacologiaRESUMO
Using C9 cells stably expressing LPA1 receptors fused to the enhanced green fluorescent protein, it was observed that activation of protein kinase C induced a rapid and strong increase in the phosphorylation state of these receptors. Overnight incubation with phorbol esters markedly decreased the amount of conventional (α, ßI, ßII and γ) and novel (δ) but not atypical (ζ) immunodetected PKC isoforms, this treatment blocks the action of protein kinase on receptor function and phosphorylation. Bis-indolylmaleimide I a general, non-subtype selective protein kinase C inhibitor, and Gö 6976, selective for the isoforms α and ß, were also able to block LPA1 receptor desensitization and phosphorylation; hispidin, isoform ß-selective blocker partially avoided receptor desensitization. Expression of dominant-negative protein kinase C α or ß II mutants and knocking down the expression of these kinase isozymes markedly decreased phorbol ester-induced LPA1 receptor phosphorylation without avoiding receptor desensitization. This effect was blocked by bis-indolyl-maleimide and Gö 6976, suggesting that these genetic interventions were not completely effective. It was also observed that protein kinase C α and ß II isozymes co-immunoprecipitate with LPA1 receptors and that such an association was further increased by cell treatments with phorbol esters or lysophosphatidic acid. Our data suggest that conventional protein kinase C α and ß isozymes modulate LPA1 receptor phosphorylation state. Receptor desensitization appears to be a more complex process that might involve additional elements.