RESUMO
To study the spatial interactions among cancer and non-cancer cells1, we here examined a cohort of 131 tumour sections from 78 cases across 6 cancer types by Visium spatial transcriptomics (ST). This was combined with 48 matched single-nucleus RNA sequencing samples and 22 matched co-detection by indexing (CODEX) samples. To describe tumour structures and habitats, we defined 'tumour microregions' as spatially distinct cancer cell clusters separated by stromal components. They varied in size and density among cancer types, with the largest microregions observed in metastatic samples. We further grouped microregions with shared genetic alterations into 'spatial subclones'. Thirty five tumour sections exhibited subclonal structures. Spatial subclones with distinct copy number variations and mutations displayed differential oncogenic activities. We identified increased metabolic activity at the centre and increased antigen presentation along the leading edges of microregions. We also observed variable T cell infiltrations within microregions and macrophages predominantly residing at tumour boundaries. We reconstructed 3D tumour structures by co-registering 48 serial ST sections from 16 samples, which provided insights into the spatial organization and heterogeneity of tumours. Additionally, using an unsupervised deep-learning algorithm and integrating ST and CODEX data, we identified both immune hot and cold neighbourhoods and enhanced immune exhaustion markers surrounding the 3D subclones. These findings contribute to the understanding of spatial tumour evolution through interactions with the local microenvironment in 2D and 3D space, providing valuable insights into tumour biology.
Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/imunologia , Variações do Número de Cópias de DNA/genética , Aprendizado Profundo , Transcriptoma , Mutação , Macrófagos/metabolismo , Macrófagos/imunologia , Apresentação de Antígeno , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Clonais/metabolismo , Células Clonais/patologiaRESUMO
Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.
Assuntos
Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias , Humanos , Hipóxia Celular , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Transição Epitelial-Mesenquimal , Estrogênios/metabolismo , Perfilação da Expressão Gênica , Proteínas Ativadoras de GTPase/metabolismo , Metástase Neoplásica , Neoplasias/classificação , Neoplasias/genética , Neoplasias/patologia , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Fatores de Transcrição/metabolismoRESUMO
Tumor-associated macrophages (TAMs) are essential components of the cancer microenvironment and play critical roles in the regulation of tumor progression. Optimal therapeutic intervention requires in-depth understanding of the sources that sustain macrophages in malignant tissues. In this study, we investigated the ontogeny of TAMs in murine pancreatic ductal adenocarcinoma (PDAC) models. We identified both inflammatory monocytes and tissue-resident macrophages as sources of TAMs. Unexpectedly, significant portions of pancreas-resident macrophages originated from embryonic development and expanded through in situ proliferation during tumor progression. Whereas monocyte-derived TAMs played more potent roles in antigen presentation, embryonically derived TAMs exhibited a pro-fibrotic transcriptional profile, indicative of their role in producing and remodeling molecules in the extracellular matrix. Collectively, these findings uncover the heterogeneity of TAM origin and functions and could provide therapeutic insight for PDAC treatment.
Assuntos
Carcinogênese , Carcinoma Ductal/imunologia , Macrófagos/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/imunologia , Animais , Carcinoma Ductal/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Matriz Extracelular/metabolismo , Desenvolvimento Fetal , Fibrose , Hematopoese , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Neoplasias Pancreáticas/patologia , Microambiente TumoralRESUMO
BACKGROUND: EpCAM (Epithelial cell adhesion molecule) is often dysregulated in epithelial cancers. Prior studies implicate EpCAM in the regulation of oncogenic signaling pathways and epithelial-to-mesenchymal transition. It was recently demonstrated that EpCAM contains a thyroglobulin type-1 (TY-1) domain. Multiple proteins with TY-1 domains are known to inhibit cathepsin-L (CTSL), a cysteine protease that promotes tumor cell invasion and metastasis. Analysis of human cancer sequencing studies reveals that somatic EpCAM mutations are present in up to 5.1% of tested tumors. METHODS: The Catalogue of Somatic Mutations in Cancer (COSMIC) database was queried to tabulate the position and amino acid changes of cancer associated EpCAM mutations. To determine how EpCAM mutations affect cancer biology we studied C66Y, a damaging TY-1 domain mutation identified in liver cancer, as well as 13 other cancer-associated EpCAM mutations. In vitro and in vivo models were used to determine the effect of wild type (WT) and mutant EpCAM on CTSL activity and invasion. Immunoprecipitation and localization studies tested EpCAM and CTSL protein binding and determined compartmental expression patterns of EpCAM mutants. RESULTS: We demonstrate that WT EpCAM, but not C66Y EpCAM, inhibits CTSL activity in vitro, and the TY-1 domain of EpCAM is responsible for this inhibition. WT EpCAM, but not C66Y EpCAM, inhibits tumor cell invasion in vitro and lung metastases in vivo. In an extended panel of human cancer cell lines, EpCAM expression is inversely correlated with CTSL activity. Previous studies have demonstrated that EpCAM germline mutations can prevent EpCAM from being expressed at the cell surface. We demonstrate that C66Y and multiple other EpCAM cancer-associated mutations prevent surface expression of EpCAM. Cancer-associated mutations that prevent EpCAM cell surface expression abrogate the ability of EpCAM to inhibit CTSL activity and tumor cell invasion. CONCLUSIONS: These studies reveal a novel role for EpCAM as a CTSL inhibitor, confirm the functional relevance of multiple cancer-associated EpCAM mutations, and suggest a therapeutic vulnerability in cancers harboring EpCAM mutations.
Assuntos
Catepsina L/antagonistas & inibidores , Molécula de Adesão da Célula Epitelial/genética , Mutação , Neoplasias/genética , Animais , Catepsina L/fisiologia , Molécula de Adesão da Célula Epitelial/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Invasividade NeoplásicaRESUMO
The mammalian immune system discriminates between modes of cell death; necrosis often results in inflammation and adaptive immunity, whereas apoptosis tends to be anti-inflammatory and promote immune tolerance. We have examined apoptosis for the features responsible for tolerance; specifically, we looked at the roles of caspases and mitochondria. Our results show that caspase activation targeted the mitochondria to produce reactive oxygen species (ROS), which were critical to tolerance induction by apoptotic cells. ROS oxidized the potential danger signal high-mobility group box-1 protein (HMGB1) released from dying cells and thereby neutralized its stimulatory activity. Apoptotic cells failed to induce tolerance and instead stimulated immune responses by scavenging or by mutating a mitochondrial caspase target protein when ROS activity was prohibited. Similarly, blocking sites of oxidation in HMGB1 prevented tolerance induction by apoptotic cells. These results suggest that caspase-orchestrated mitochondrial events determine the impact of apoptotic cells on the immune response.
Assuntos
Apoptose/imunologia , Caspases/imunologia , Proteína HMGB1/imunologia , Tolerância Imunológica/imunologia , Mitocôndrias/metabolismo , Animais , Células Dendríticas/imunologia , Proteína HMGB1/metabolismo , Células HeLa , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia , Oxirredução , Espécies Reativas de Oxigênio/imunologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
Activation of naïve cluster of differentiation (CD)8(+) cytotoxic T lymphocytes (CTLs) is a tightly regulated process, and specific dendritic cell (DC) subsets are typically required to activate naive CTLs. Potential pathways for antigen presentation leading to CD8(+) T-cell priming include direct presentation, cross-presentation, and cross-dressing. To distinguish between these pathways, we designed single-chain trimer (SCT) peptide-MHC class I complexes that can be recognized as intact molecules but cannot deliver antigen to MHC through conventional antigen processing. We demonstrate that cross-dressing is a robust pathway of antigen presentation following vaccination, capable of efficiently activating both naïve and memory CD8(+) T cells and requires CD8α(+)/CD103(+) DCs. Significantly, immune responses induced exclusively by cross-dressing were as strong as those induced exclusively through cross-presentation. Thus, cross-dressing is an important pathway of antigen presentation, with important implications for the study of CD8(+) T-cell responses to viral infection, tumors, and vaccines.
Assuntos
Apresentação de Antígeno , Antígenos CD/imunologia , Antígenos CD8/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/imunologia , Vacinação , Animais , Antígenos CD/genética , Antígenos CD8/genética , Linfócitos T CD8-Positivos/citologia , Células Cultivadas , Células Dendríticas/citologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Cadeias alfa de Integrinas/genética , Camundongos , Camundongos Knockout , Peptídeos/genética , Peptídeos/imunologiaRESUMO
Breast cancer (BC) is defined by distinct molecular subtypes with different cells of origin. The transcriptional networks that characterize the subtype-specific tumor-normal lineages are not established. In this work, we applied bulk, single-cell and single-nucleus multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 patients with BC to show characteristic links in gene expression and chromatin accessibility between BC subtypes and their putative cells of origin. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal BC and luminal mature cells and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like (SOX6 and KCNQ3) and luminal A/B (FAM155A and LRP1B) lineages. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like BC, suggesting an altered means of immune dysfunction. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single-cell level is a powerful tool for investigating cancer lineage and highlight transcriptional networks that define basal and luminal BC lineages.
RESUMO
Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.
RESUMO
Current treatment approaches for renal cell carcinoma (RCC) face challenges in achieving durable tumor responses due to tumor heterogeneity and drug resistance. Combination therapies that leverage tumor molecular profiles could offer an avenue for enhancing treatment efficacy and addressing the limitations of current therapies. To identify effective strategies for treating RCC, we selected ten drugs guided by tumor biology to test in six RCC patient-derived xenograft (PDX) models. The multitargeted tyrosine kinase inhibitor (TKI) cabozantinib and mTORC1/2 inhibitor sapanisertib emerged as the most effective drugs, particularly when combined. The combination demonstrated favorable tolerability and inhibited tumor growth or induced tumor regression in all models, including two from patients who experienced treatment failure with FDA-approved TKI and immunotherapy combinations. In cabozantinib-treated samples, imaging analysis revealed a significant reduction in vascular density, and single-nucleus RNA sequencing (snRNA-seq) analysis indicated a decreased proportion of endothelial cells in the tumors. SnRNA-seq data further identified a tumor subpopulation enriched with cell-cycle activity that exhibited heightened sensitivity to the cabozantinib and sapanisertib combination. Conversely, activation of the epithelial-mesenchymal transition pathway, detected at the protein level, was associated with drug resistance in residual tumors following combination treatment. The combination effectively restrained ERK phosphorylation and reduced expression of ERK downstream transcription factors and their target genes implicated in cell-cycle control and apoptosis. This study highlights the potential of the cabozantinib plus sapanisertib combination as a promising treatment approach for patients with RCC, particularly those whose tumors progressed on immune checkpoint inhibitors and other TKIs. SIGNIFICANCE: The molecular-guided therapeutic strategy of combining cabozantinib and sapanisertib restrains ERK activity to effectively suppress growth of renal cell carcinomas, including those unresponsive to immune checkpoint inhibitors.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Sistema de Sinalização das MAP Quinases , Inibidores de Checkpoint Imunológico/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina , Células Endoteliais/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Anilidas/farmacologia , Anilidas/uso terapêutico , RNA Nuclear Pequeno/uso terapêuticoRESUMO
An important mechanism by which pancreatic cancer avoids antitumor immunity is by recruiting regulatory T cells (Tregs) to the tumor microenvironment. Recent studies suggest that suppressor Tregs and effector Th17 cells share a common lineage and differentiate based on the presence of certain cytokines in the microenvironment. Because IL-6 in the presence of TGF-ß has been shown to inhibit Treg development and induce Th17 cells, we hypothesized that altering the tumor cytokine environment could induce Th17 and reverse tumor-associated immune suppression. Pan02 murine pancreatic tumor cells that secrete TGF-ß were transduced with the gene encoding IL-6. C57BL/6 mice were injected s.c. with wild-type (WT), empty vector (EV), or IL-6-transduced Pan02 cells (IL-6 Pan02) to investigate the impact of IL-6 secretion in the tumor microenvironment. Mice bearing IL-6 Pan02 tumors demonstrated significant delay in tumor growth and better overall median survival compared with mice bearing WT or EV Pan02 tumors. Immunohistochemical analysis demonstrated an increase in Th17 cells (CD4(+)IL-23R(+) cells and CD4(+)IL-17(+) cells) in tumors of the IL-6 Pan02 group compared with WT or EV Pan02 tumors. The upregulation of IL-17-secreting CD4(+) tumor-infiltrating lymphocytes was substantiated at the cellular level by flow cytometry and ELISPOT assay and mRNA level for retinoic acid-related orphan receptor γt and IL-23R by RT-PCR. Thus, the addition of IL-6 to the tumor microenvironment skews the balance toward Th17 cells in a murine model of pancreatic cancer. The delayed tumor growth and improved survival suggests that induction of Th17 in the tumor microenvironment produces an antitumor effect.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-17/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Pancreáticas/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Separação Celular , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Interleucina-17/biossíntese , Interleucina-6/imunologia , Interleucina-6/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/metabolismo , Transdução GenéticaRESUMO
The effects of radiotherapy (RT) on tumor immunity in pancreatic ductal adenocarcinoma (PDAC) are not well understood. To better understand if RT can prime antigen-specific T-cell responses, we analyzed human PDAC tissues and mouse models. In both settings, there was little evidence of RT-induced T-cell priming. Using in vitro systems, we found that tumor-stromal components, including fibroblasts and collagen, cooperate to blunt RT efficacy and impair RT-induced interferon signaling. Focal adhesion kinase (FAK) inhibition rescued RT efficacy in vitro and in vivo, leading to tumor regression, T-cell priming, and enhanced long-term survival in PDAC mouse models. Based on these data, we initiated a clinical trial of defactinib in combination with stereotactic body RT in patients with PDAC (NCT04331041). Analysis of PDAC tissues from these patients showed stromal reprogramming mirroring our findings in genetically engineered mouse models. Finally, the addition of checkpoint immunotherapy to RT and FAK inhibition in animal models led to complete tumor regression and long-term survival. SIGNIFICANCE: Checkpoint immunotherapeutics have not been effective in PDAC, even when combined with RT. One possible explanation is that RT fails to prime T-cell responses in PDAC. Here, we show that FAK inhibition allows RT to prime tumor immunity and unlock responsiveness to checkpoint immunotherapy. This article is highlighted in the In This Issue feature, p. 2711.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Proteína-Tirosina Quinases de Adesão Focal , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/radioterapia , Imunoterapia , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias PancreáticasRESUMO
Motivation: The use of single-cell methods is expanding at an ever-increasing rate. While there are established algorithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the availability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell type classifications. Results: Pollock performs comparably to existing classification methods, while offering easily deployable pretrained classification models across a wide variety of tissue and data types. Additionally, it demonstrates utility in immune pan-cancer analysis. Availability and implementation: Source code and documentation are available at https://github.com/ding-lab/pollock. Pretrained models and datasets are available for download at https://zenodo.org/record/5895221. Supplementary information: Supplementary data are available at Bioinformatics Advances online.
RESUMO
Atezolizumab with chemotherapy has shown improved progression-free and overall survival in patients with metastatic PD-L1 positive triple negative breast cancer (TNBC). Atezolizumab with anthracycline- and taxane-based neoadjuvant chemotherapy has also shown increased pathological complete response (pCR) rates in early TNBC. This trial evaluated neoadjuvant carboplatin and paclitaxel with or without atezolizumab in patients with clinical stages II-III TNBC. The co-primary objectives were to evaluate if chemotherapy and atezolizumab increase pCR rate and tumor infiltrating lymphocyte (TIL) percentage compared to chemotherapy alone in the mITT population. Sixty-seven patients (ages 25-78 years; median, 52 years) were randomly assigned - 22 patients to Arm A, and 45 to Arm B. Median follow up was 6.6 months. In the modified intent to treat population (all patients evaluable for the primary endpoints who received at least one dose of combination therapy), the pCR rate was 18.8% (95% CI 4.0-45.6%) in Arm A, and 55.6% (95% CI 40.0-70.4%) in Arm B (estimated treatment difference: 36.8%, 95% CI 8.5-56.6%; p = 0.018). Grade 3 or higher treatment-related adverse events occurred in 62.5% of patients in Arm A, and 57.8% of patients in Arm B. One patient in Arm B died from recurrent disease during the follow-up period. TIL percentage increased slightly from baseline to cycle 1 in both Arm A (mean ± SD: 0.6% ± 21.0%) and Arm B (5.7% ± 15.8%) (p = 0.36). Patients with pCR had higher median TIL percentages (24.8%) than those with non-pCR (14.2%) (p = 0.02). Although subgroup analyses were limited by the small sample size, PD-L1-positive patients treated with chemotherapy and atezolizumab had a pCR rate of 75% (12/16). The addition of atezolizumab to neoadjuvant carboplatin and paclitaxel resulted in a statistically significant and clinically relevant increased pCR rate in patients with clinical stages II and III TNBC. (Funded by National Cancer Institute).
RESUMO
Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Transformação Celular Neoplásica/genética , Humanos , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética , Neoplasias PancreáticasRESUMO
BACKGROUND: Preclinical studies and early clinical trials have shown that targeting cancer neoantigens is a promising approach towards the development of personalized cancer immunotherapies. DNA vaccines can be rapidly and efficiently manufactured and can integrate multiple neoantigens simultaneously. We therefore sought to optimize the design of polyepitope DNA vaccines and test optimized polyepitope neoantigen DNA vaccines in preclinical models and in clinical translation. METHODS: We developed and optimized a DNA vaccine platform to target multiple neoantigens. The polyepitope DNA vaccine platform was first optimized using model antigens in vitro and in vivo. We then identified neoantigens in preclinical breast cancer models through genome sequencing and in silico neoantigen prediction pipelines. Optimized polyepitope neoantigen DNA vaccines specific for the murine breast tumor E0771 and 4T1 were designed and their immunogenicity was tested in vivo. We also tested an optimized polyepitope neoantigen DNA vaccine in a patient with metastatic pancreatic neuroendocrine tumor. RESULTS: Our data support an optimized polyepitope neoantigen DNA vaccine design encoding long (≥20-mer) epitopes with a mutant form of ubiquitin (Ubmut) fused to the N-terminus for antigen processing and presentation. Optimized polyepitope neoantigen DNA vaccines were immunogenic and generated robust neoantigen-specific immune responses in mice. The magnitude of immune responses generated by optimized polyepitope neoantigen DNA vaccines was similar to that of synthetic long peptide vaccines specific for the same neoantigens. When combined with immune checkpoint blockade therapy, optimized polyepitope neoantigen DNA vaccines were capable of inducing antitumor immunity in preclinical models. Immune monitoring data suggest that optimized polyepitope neoantigen DNA vaccines are capable of inducing neoantigen-specific T cell responses in a patient with metastatic pancreatic neuroendocrine tumor. CONCLUSIONS: We have developed and optimized a novel polyepitope neoantigen DNA vaccine platform that can target multiple neoantigens and induce antitumor immune responses in preclinical models and neoantigen-specific responses in clinical translation.
Assuntos
Antígenos de Neoplasias/imunologia , Epitopos/imunologia , Imunidade , Pesquisa Translacional Biomédica , Vacinas de DNA/imunologia , Adulto , Animais , Apresentação de Antígeno/imunologia , Proliferação de Células , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Masculino , Neoplasias Mamárias Animais/patologia , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Tumores Neuroendócrinos/imunologia , Tumores Neuroendócrinos/patologia , Peptídeos/imunologia , Linfócitos T/imunologiaRESUMO
Although checkpoint immunotherapies have revolutionized the treatment of cancer, not all tumor types have seen substantial benefit. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy in which very limited responses to immunotherapy have been observed. Extensive immunosuppressive myeloid cell infiltration in PDAC tissues has been postulated as a major mechanism of resistance to immunotherapy. Strategies concomitantly targeting monocyte or granulocyte trafficking or macrophage survival, in combination with checkpoint immunotherapies, have shown promise in preclinical studies, and these studies have transitioned into ongoing clinical trials for the treatment of pancreatic and other cancer types. However, compensatory actions by untargeted monocytes, granulocytes, and/or tissue resident macrophages may limit the therapeutic efficacy of such strategies. CD11b/CD18 is an integrin molecule that is highly expressed on the cell surface of these myeloid cell subsets and plays an important role in their trafficking and cellular functions in inflamed tissues. Here, we demonstrate that the partial activation of CD11b by a small-molecule agonist (ADH-503) leads to the repolarization of tumor-associated macrophages, reduction in the number of tumor-infiltrating immunosuppressive myeloid cells, and enhanced dendritic cell responses. These actions, in turn, improve antitumor T cell immunity and render checkpoint inhibitors effective in previously unresponsive PDAC models. These data demonstrate that molecular agonism of CD11b reprograms immunosuppressive myeloid cell responses and potentially bypasses the limitations of current clinical strategies to overcome resistance to immunotherapy.
Assuntos
Antígeno CD11b/agonistas , Imunidade Inata , Imunoterapia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Animais , Antígenos CD/metabolismo , Proliferação de Células , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Granulócitos/metabolismo , Humanos , Cadeias alfa de Integrinas/metabolismo , Ativação de Macrófagos , Camundongos Endogâmicos C57BL , Células Mieloides/imunologia , Metástase Neoplásica , Análise de Sobrevida , Linfócitos T/imunologia , Resultado do TratamentoRESUMO
Next-generation sequencing technologies have provided insights into the biology and mutational landscape of cancer. Here, we evaluate the relevance of cancer neoantigens in human breast cancers. Using patient-derived xenografts from three patients with advanced breast cancer (xenografts were designated as WHIM30, WHIM35, and WHIM37), we sequenced exomes of tumor and patient-matched normal cells. We identified 2,091 (WHIM30), 354 (WHIM35), and 235 (WHIM37) nonsynonymous somatic mutations. A computational analysis identified and prioritized HLA class I-restricted candidate neoantigens expressed in the dominant tumor clone. Each candidate neoantigen was evaluated using peptide-binding assays, T-cell cultures that measure the ability of CD8+ T cells to recognize candidate neoantigens, and preclinical models in which we measured antitumor immunity. Our results demonstrate that breast cancer neoantigens can be recognized by the immune system, and that human CD8+ T cells enriched for prioritized breast cancer neoantigens were able to protect mice from tumor challenge with autologous patient-derived xenografts. We conclude that next-generation sequencing and epitope-prediction strategies can identify and prioritize candidate neoantigens for immune targeting in breast cancer. Cancer Immunol Res; 5(7); 516-23. ©2017 AACR.
Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos/imunologia , Animais , Antígenos de Neoplasias/genética , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Mapeamento de Epitopos , Epitopos/genética , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Mutação/genética , Mutação/imunologia , Linfócitos T Citotóxicos/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Single-agent immunotherapy has achieved limited clinical benefit to date in patients with pancreatic ductal adenocarcinoma (PDAC). This may be a result of the presence of a uniquely immunosuppressive tumor microenvironment (TME). Critical obstacles to immunotherapy in PDAC tumors include a high number of tumor-associated immunosuppressive cells and a uniquely desmoplastic stroma that functions as a barrier to T cell infiltration. We identified hyperactivated focal adhesion kinase (FAK) activity in neoplastic PDAC cells as an important regulator of the fibrotic and immunosuppressive TME. We found that FAK activity was elevated in human PDAC tissues and correlated with high levels of fibrosis and poor CD8(+) cytotoxic T cell infiltration. Single-agent FAK inhibition using the selective FAK inhibitor VS-4718 substantially limited tumor progression, resulting in a doubling of survival in the p48-Cre;LSL-Kras(G12D);Trp53(flox/+) (KPC) mouse model of human PDAC. This delay in tumor progression was associated with markedly reduced tumor fibrosis and decreased numbers of tumor-infiltrating immunosuppressive cells. We also found that FAK inhibition rendered the previously unresponsive KPC mouse model responsive to T cell immunotherapy and PD-1 antagonists. These data suggest that FAK inhibition increases immune surveillance by overcoming the fibrotic and immunosuppressive PDAC TME and renders tumors responsive to immunotherapy.