RESUMO
Gene-environment interactions (G × E), the interplay of genetic variation with environmental factors, have a pivotal impact on human complex traits and diseases. Statistically, G × E can be assessed by determining the deviation from expectation of predictive models based solely on the phenotypic effects of genetics or environmental exposures. Despite the unprecedented, widespread and diverse use of G × E analytical frameworks, heterogeneity in their application and reporting hinders their applicability in public health. In this Review, we discuss study design considerations as well as G × E analytical frameworks to assess polygenic liability dependent on the environment, to identify specific genetic variants exhibiting G × E, and to characterize environmental context for these dynamics. We conclude with recommendations to address the most common challenges and pitfalls in the conceptualization, methodology and reporting of G × E studies, as well as future directions.
Assuntos
Interação Gene-Ambiente , Herança Multifatorial , Humanos , Herança Multifatorial/genética , Variação Genética , Predisposição Genética para Doença , Fenótipo , Modelos GenéticosRESUMO
Rationale: Club cell secretory protein (CC16) is an antiinflammatory protein highly expressed in the airways. CC16 deficiency has been associated with lung function deficits, but its role in asthma has not been established conclusively. Objectives: To determine 1) the longitudinal association of circulating CC16 with the presence of active asthma from early childhood through adult life and 2) whether CC16 in early childhood predicts the clinical course of childhood asthma into adult life. Methods: We assessed the association of circulating CC16 and asthma in three population-based birth cohorts: the Tucson Children's Respiratory Study (years 6-36; total participants, 814; total observations, 3,042), the Swedish Barn/Children, Allergy, Milieu, Stockholm, Epidemiological survey (years 8-24; total participants, 2,547; total observations, 3,438), and the UK Manchester Asthma and Allergy Study (years 5-18; total participants, 745; total observations, 1,626). Among 233 children who had asthma at the first survey in any of the cohorts, baseline CC16 was also tested for association with persistence of symptoms. Measurements and Main Results: After adjusting for covariates, CC16 deficits were associated with increased risk for the presence of asthma in all cohorts (meta-analyzed adjusted odds ratio per 1-SD CC16 decrease, 1.20; 95% confidence interval [CI], 1.12-1.28; P < 0.0001). The association was particularly strong for asthma with frequent symptoms (meta-analyzed adjusted relative risk ratio, 1.40; 95% CI, 1.24-1.57; P < 0.0001), was confirmed for both atopic and nonatopic asthma, and was independent of lung function impairment. After adjustment for known predictors of persistent asthma, children with asthma in the lowest CC16 tertile had a nearly fourfold increased risk for having frequent symptoms persisting into adult life compared with children with asthma in the other two CC16 tertiles (meta-analyzed adjusted odds ratio, 3.72; 95% CI, 1.78-7.76; P < 0.0001). Conclusions: Circulating CC16 deficits are associated with the presence of asthma with frequent symptoms from childhood through midadult life and predict the persistence of asthma symptoms into adulthood. These findings support a possible protective role of CC16 in asthma and its potential use for risk stratification.
Assuntos
Asma , Uteroglobina , Adulto , Criança , Pré-Escolar , Humanos , Asma/sangue , Asma/epidemiologia , Asma/genética , Asma/metabolismo , Uteroglobina/sangue , Uteroglobina/deficiência , Uteroglobina/genética , Uteroglobina/metabolismo , Adolescente , Adulto Jovem , Suécia/epidemiologiaRESUMO
BACKGROUND: Albuterol is the drug most widely used as asthma treatment among African Americans despite having a lower bronchodilator drug response (BDR) than other populations. Although BDR is affected by gene and environmental factors, the influence of DNA methylation is unknown. OBJECTIVE: This study aimed to identify epigenetic markers in whole blood associated with BDR, study their functional consequences by multi-omic integration, and assess their clinical applicability in admixed populations with a high asthma burden. METHODS: We studied 414 children and young adults (8-21 years old) with asthma in a discovery and replication design. We performed an epigenome-wide association study on 221 African Americans and replicated the results on 193 Latinos. Functional consequences were assessed by integrating epigenomics with genomics, transcriptomics, and environmental exposure data. Machine learning was used to develop a panel of epigenetic markers to classify treatment response. RESULTS: We identified 5 differentially methylated regions and 2 CpGs genome-wide significantly associated with BDR in African Americans located in FGL2 (cg08241295, P = 6.8 × 10-9) and DNASE2 (cg15341340, P = 7.8 × 10-8), which were regulated by genetic variation and/or associated with gene expression of nearby genes (false discovery rate < 0.05). The CpG cg15341340 was replicated in Latinos (P = 3.5 × 10-3). Moreover, a panel of 70 CpGs showed good classification for those with response and nonresponse to albuterol therapy in African American and Latino children (area under the receiver operating characteristic curve for training, 0.99; for validation, 0.70-0.71). The DNA methylation model showed similar discrimination as clinical predictors (P > .05). CONCLUSIONS: We report novel associations of epigenetic markers with BDR in pediatric asthma and demonstrate for the first time the applicability of pharmacoepigenetics in precision medicine of respiratory diseases.
Assuntos
Asma , Broncodilatadores , Criança , Adulto Jovem , Humanos , Adolescente , Adulto , Broncodilatadores/uso terapêutico , Epigenoma , Multiômica , Asma/tratamento farmacológico , Asma/genética , Asma/metabolismo , Albuterol/uso terapêutico , Metilação de DNA , Estudo de Associação Genômica Ampla , Fibrinogênio/metabolismoRESUMO
BACKGROUND: In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE: We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS: We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS: Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS: Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.
Assuntos
Asma , Hispânico ou Latino , Adolescente , Humanos , Asma/genética , Estudo de Associação Genômica Ampla , Hispânico ou Latino/genética , Polimorfismo de Nucleotídeo Único , Estados Unidos/epidemiologia , Criança , Americanos MexicanosRESUMO
BACKGROUND: The epigenetic mechanisms of asthma remain largely understudied in African Americans and Hispanics/Latinos, two populations disproportionately affected by asthma. We aimed to identify markers, regions and processes with differential patterns of DNA methylation (DNAm) in whole blood by asthma status in ethnically diverse children and youth, and to assess their functional consequences. METHODS: DNAm levels were profiled with the Infinium MethylationEPIC or HumanMethylation450 BeadChip arrays among 1226 African Americans or Hispanics/Latinos and assessed for differential methylation per asthma status at the CpG and region (differentially methylated region (DMR)) level. Novel associations were validated in blood and/or nasal epithelium from ethnically diverse children and youth. The functional and biological implications of the markers identified were investigated by combining epigenomics with transcriptomics from study participants. RESULTS: 128 CpGs and 196 DMRs were differentially methylated after multiple testing corrections, including 92.3% and 92.8% novel associations, respectively. 41 CpGs were replicated in other Hispanics/Latinos, prioritising cg17647904 (NCOR2) and cg16412914 (AXIN1) as asthma DNAm markers. Significant DNAm markers were enriched in previous associations for asthma, fractional exhaled nitric oxide, bacterial infections, immune regulation or eosinophilia. Functional annotation highlighted epigenetically regulated gene networks involved in corticosteroid response, host defence and immune regulation. Several implicated genes are targets for approved or experimental drugs, including TNNC1 and NDUFA12. Many differentially methylated loci previously associated with asthma were validated in our study. CONCLUSIONS: We report novel whole-blood DNAm markers for asthma underlying key processes of the disease pathophysiology and confirm the transferability of previous asthma DNAm associations to ethnically diverse populations.
Assuntos
Asma , Epigenoma , Criança , Humanos , Adolescente , Epigênese Genética , Asma/genética , Metilação de DNA , Perfilação da Expressão Gênica , NADPH Desidrogenase/genéticaRESUMO
BACKGROUND: Asthma exacerbations are a serious public health concern due to high healthcare resource utilization, work/school productivity loss, impact on quality of life, and risk of mortality. The genetic basis of asthma exacerbations has been studied in several populations, but no prior study has performed a multi-ancestry meta-analysis of genome-wide association studies (meta-GWAS) for this trait. We aimed to identify common genetic loci associated with asthma exacerbations across diverse populations and to assess their functional role in regulating DNA methylation and gene expression. METHODS: A meta-GWAS of asthma exacerbations in 4989 Europeans, 2181 Hispanics/Latinos, 1250 Singaporean Chinese, and 972 African Americans analyzed 9.6 million genetic variants. Suggestively associated variants (p ≤ 5 × 10-5 ) were assessed for replication in 36,477 European and 1078 non-European asthma patients. Functional effects on DNA methylation were assessed in 595 Hispanic/Latino and African American asthma patients and in publicly available databases. The effect on gene expression was evaluated in silico. RESULTS: One hundred and twenty-six independent variants were suggestively associated with asthma exacerbations in the discovery phase. Two variants independently replicated: rs12091010 located at vascular cell adhesion molecule-1/exostosin like glycosyltransferase-2 (VCAM1/EXTL2) (discovery: odds ratio (ORT allele ) = 0.82, p = 9.05 × 10-6 and replication: ORT allele = 0.89, p = 5.35 × 10-3 ) and rs943126 from pantothenate kinase 1 (PANK1) (discovery: ORC allele = 0.85, p = 3.10 × 10-5 and replication: ORC allele = 0.89, p = 1.30 × 10-2 ). Both variants regulate gene expression of genes where they locate and DNA methylation levels of nearby genes in whole blood. CONCLUSIONS: This multi-ancestry study revealed novel suggestive regulatory loci for asthma exacerbations located in genomic regions participating in inflammation and host defense.
Assuntos
Asma , Estudo de Associação Genômica Ampla , Asma/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo Único , Qualidade de VidaRESUMO
BACKGROUND: Little is known about the genetic determinants of severe asthma exacerbations. OBJECTIVES: We aimed to identify genetic variants associated with asthma hospitalizations. METHODS: We conducted a genome-wide association study of asthma hospitalizations in 34,167 white British adults with asthma, 1,658 of whom had at least 1 asthma-related hospitalization. This analysis was conducted by using logistic regression under an additive genetic model with adjustment for age, sex, body mass index, smoking status, and the first 5 principal components derived from genotypic data. We then analyzed data from 2 cohorts of Latino children and adolescents for replication and conducted quantitative trait locus and functional annotation analyses. RESULTS: At the chromosome 6p21.3 locus, the single-nucleotide polymorphism (SNP) rs56151658 (8 kb from the promoter of HLA-DQB1) was most significantly associated with asthma hospitalizations (for test allele A, odds ratio = 1.36 [95% CI = 1.22-1.52]; P = 3.11 × 10-8); 21 additional SNPs in this locus were associated with asthma hospitalizations at a P value less than 1 × 10-6. In the replication cohorts, multiple SNPs in strong linkage disequilibrium with rs56151658 were associated with severe asthma exacerbations at a P value of .01 or less in the same direction of association as in the discovery cohort. Three HLA genes (HLA-DQA2, HLA-DRB6, and HLA-DOB) were also shown to mediate the estimated effects of the SNPs associated with asthma hospitalizations through effects on gene expression in lung tissue. CONCLUSIONS: We identified strong candidate genes for asthma hospitalizations in adults in the region for class II HLA genes through genomic, quantitative trait locus, and summary data-based mendelian randomization analyses.
Assuntos
Asma/genética , Genótipo , Cadeias beta de HLA-DQ/genética , Hospitalização/estatística & dados numéricos , Adulto , Asma/epidemiologia , Estudos de Coortes , Feminino , Frequência do Gene , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Antígenos HLA-D/genética , Antígenos HLA-DQ/genética , Cadeias beta de HLA-DR/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Reino Unido/epidemiologiaRESUMO
Severe asthma exacerbations are a major cause of school absences and healthcare costs in children, particularly those in high-risk racial/ethnic groups.To identify susceptibility genes for severe asthma exacerbations in Latino children and adolescents, we conducted a meta-analysis of genome-wide association studies (GWAS) in 4010 Latino youth with asthma in four independent cohorts, including 1693 Puerto Ricans, 1019 Costa Ricans, 640 Mexicans, 256 Brazilians and 402 members of other Latino subgroups. We then conducted methylation quantitative trait locus, expression quantitative trait locus and expression quantitative trait methylation analyses to assess whether the top single nucleotide polymorphism (SNP) in the meta-analysis is linked to DNA methylation and gene expression in nasal (airway) epithelium in separate cohorts of Puerto Rican and Dutch children and adolescents.In the meta-analysis of GWAS, an SNP in FLJ22447 (rs2253681) was significantly associated with 1.55 increased odds of severe asthma exacerbation (95% CI 1.34-1.79, p=6.3×10-9). This SNP was significantly associated with DNA methylation of a CpG site (cg25024579) at the FLJ22447 locus, which was in turn associated with increased expression of KCNJ2-AS1 in nasal airway epithelium from Puerto Rican children and adolescents (ß=0.10, p=2.18×10-7).SNP rs2253681 was significantly associated with both DNA methylation of a cis-CpG in FLJ22447 and severe asthma exacerbations in Latino youth. This may be partly explained by changes in airway epithelial expression of a gene recently implicated in atopic asthma in Puerto Rican children and adolescents (KCNJ2-AS1).
Assuntos
Asma , Estudo de Associação Genômica Ampla , Adolescente , Asma/genética , Brasil , Criança , Hispânico ou Latino/genética , Humanos , Porto RicoRESUMO
RATIONALE: Substantial variability in response to asthma treatment with inhaled corticosteroids (ICS) has been described among individuals and populations, suggesting the contribution of genetic factors. Nonetheless, only a few genes have been identified to date. We aimed to identify genetic variants associated with asthma exacerbations despite ICS use in European children and young adults and to validate the findings in non-Europeans. Moreover, we explored whether a gene-set enrichment analysis could suggest potential novel asthma therapies. METHODS: A genome-wide association study (GWAS) of asthma exacerbations was tested in 2681 children of European descent treated with ICS from eight studies. Suggestive association signals were followed up for replication in 538 European asthma patients. Further evaluation was performed in 1773 non-Europeans. Variants revealed by published GWAS were assessed for replication. Additionally, gene-set enrichment analysis focused on drugs was performed. RESULTS: 10 independent variants were associated with asthma exacerbations despite ICS treatment in the discovery phase (p≤5×10-6). Of those, one variant at the CACNA2D3-WNT5A locus was nominally replicated in Europeans (rs67026078; p=0.010), but this was not validated in non-European populations. Five other genes associated with ICS response in previous studies were replicated. Additionally, an enrichment of associations in genes regulated by trichostatin A treatment was found. CONCLUSIONS: The intergenic region of CACNA2D3 and WNT5A was revealed as a novel locus for asthma exacerbations despite ICS treatment in European populations. Genes associated were related to trichostatin A, suggesting that this drug could regulate the molecular mechanisms involved in treatment response.
Assuntos
Antiasmáticos , Asma , Administração por Inalação , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Criança , Estudo de Associação Genômica Ampla , Humanos , Adulto JovemRESUMO
BACKGROUND: Severe asthma exacerbations are a major cause of asthma morbidity and increased healthcare costs. Several studies have shown racial and ethnic differences in asthma exacerbation rates. We aimed to identify genetic variants associated with severe exacerbations in two high-risk populations for asthma. METHODS: A genome-wide association study of asthma in children and youth with severe exacerbations was performed in 1283 exacerbators and 2027 controls without asthma of Latino ancestry. Independent suggestive variants (P ≤ 5 × 10-6 ) were selected for replication in 448 African Americans exacerbators and 595 controls. Case-only analyses were performed comparing the exacerbators with additional 898 Latinos and 524 African Americans asthma patients without exacerbations, while adjusting by treatment category as a proxy of asthma severity. We analyzed the functionality of associated variants with in silico methods and by correlating genotypes with methylation levels in whole blood in a subset of 473 Latinos. RESULTS: We identified two genome-wide significant associations for susceptibility to asthma with severe exacerbations, including a novel locus located at chromosome 2p21 (rs4952375, odds ratio = 1.39, P = 3.8 × 10-8 ), which was also associated with asthma exacerbations in a case-only analysis (odds ratio = 1.25, P = 1.95 × 10-3 ). This polymorphism is an expression quantitative trait locus of the long intergenic non-protein coding RNA 1913 (LINC01913) in lung tissues (P = 1.3 × 10-7 ) and influences methylation levels of the protein kinase domain-containing cytoplasmic (PKDCC) gene in whole-blood cells (P = 9.8 × 10-5 ). CONCLUSION: We identified a novel susceptibility locus for severe asthma exacerbations in Hispanic/Latino and African American youths with functional effects in gene expression and methylation status of neighboring genes.
Assuntos
Asma , Estudo de Associação Genômica Ampla , Adolescente , Negro ou Afro-Americano/genética , Asma/genética , Predisposição Genética para Doença , Hispânico ou Latino/genética , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
BACKGROUND: Some children with asthma experience exacerbations despite long-acting beta2-agonist (LABA) treatment. While this variability is partly caused by genetic variation, no genome-wide study until now has investigated which genetic factors associated with risk of exacerbations despite LABA use in children with asthma. We aimed to assess whether genetic variation was associated with exacerbations in children treated with LABA from a global consortium. METHODS: A meta-analysis of genome-wide association studies (meta-GWAS) was performed in 1,425 children and young adults with asthma (age 6-21 years) with reported regular use of LABA from six studies within the PiCA consortium using a random effects model. The primary outcome of each study was defined as any exacerbation within the past 6 or 12 months, including at least one of the following: 1) hospital admissions for asthma, 2) a course of oral corticosteroids or 3) emergency room visits because of asthma. RESULTS: Genome-wide association results for a total of 82 996 common single nucleotide polymorphisms (SNPs, MAF ≥1%) with high imputation quality were meta-analysed. Eight independent variants were suggestively (P-value threshold ≤5 × 10-6 ) associated with exacerbations despite LABA use. CONCLUSION: No strong effects of single nucleotide polymorphisms (SNPs) on exacerbations during LABA use were identified. We identified two loci (TBX3 and EPHA7) that were previously implicated in the response to short-acting beta2-agonists (SABA). These loci merit further investigation in response to LABA and SABA use.
Assuntos
Antiasmáticos , Asma , Administração por Inalação , Adolescente , Corticosteroides/uso terapêutico , Adulto , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Criança , Estudo de Associação Genômica Ampla , Humanos , Adulto JovemRESUMO
Asthma is a heterogeneous and multifactorial respiratory disease with an important impact on childhood. Difficult-to-treat asthma is not uncommon among children, and it causes a high burden to the patient, caregivers, and society. This review aims to summarize the recent findings on pediatric asthma treatment response revealed by different omic approaches conducted in 2018-2019. A total of 13 studies were performed during this period to assess the role of genomics, epigenomics, transcriptomics, metabolomics, and the microbiome in the response to short-acting beta agonists, inhaled corticosteroids, and leukotriene receptor antagonists. These studies have identified novel associations of genetic markers, epigenetic modifications, metabolites, bacteria, and molecular mechanisms involved in asthma treatment response. This knowledge will allow us establishing molecular biomarkers that could be integrated with clinical information to improve the management of children with asthma.
Assuntos
Asma/etiologia , Medicina de Precisão , Asma/diagnóstico , Asma/metabolismo , Asma/terapia , Gerenciamento Clínico , Suscetibilidade a Doenças , Epigenômica , Genômica/métodos , Humanos , Metabolômica/métodos , Microbiota , Farmacogenética , Medicina de Precisão/métodosRESUMO
PURPOSE OF REVIEW: Asthma exacerbations have been suggested to result from complex interactions between genetic and nongenetic components. In this review, we provide an overview of the genetic association studies of asthma exacerbations, their main results and limitations, as well as future directions of this field. RECENT FINDINGS: Most studies on asthma exacerbations have been performed using a candidate-gene approach. Although few genome-wide association studies of asthma exacerbations have been conducted up to date, they have revealed promising associations but with small effect sizes. Additionally, the analysis of interactions between genetic and environmental factors has contributed to better understand of genotype-specific responses in asthma exacerbations. SUMMARY: Genetic association studies have allowed identifying the 17q21 locus and the ADRB2 gene as the loci most consistently associated with asthma exacerbations. Future studies should explore the full spectrum of genetic variation and will require larger sample sizes, a better representation of racial/ethnic diversity and a more precise definition of asthma exacerbations. Additionally, the analysis of important environmental gene-environment analysis and the integration of multiple omics will allow understanding the genetic factors and biological processes underlying the risk for asthma exacerbations.
Assuntos
Asma/genética , Genômica , Exacerbação dos Sintomas , Asma/tratamento farmacológico , Estudo de Associação Genômica Ampla , Genótipo , Humanos , FarmacogenéticaAssuntos
Asma/genética , Endodesoxirribonucleases/genética , Genótipo , Adolescente , Negro ou Afro-Americano , Criança , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Hispânico ou Latino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Adulto JovemRESUMO
Asthma is a heterogeneous respiratory disease that represents a substantial social and economic burden [...].
RESUMO
Asthma is a common complex airway disease whose prediction of disease risk and most severe outcomes is crucial in clinical practice for adequate clinical management. This review discusses the latest findings in asthma genomics and current obstacles faced in moving forward to translational medicine. While genome-wide association studies have provided valuable insights into the genetic basis of asthma, there are challenges that must be addressed to improve disease prediction, such as the need for diverse representation, the functional characterization of genetic variants identified, variant selection for genetic testing, and refining prediction models using polygenic risk scores.
Assuntos
Asma , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Genômica , Humanos , Asma/genética , Asma/diagnóstico , Medição de Risco , Testes GenéticosRESUMO
α-1 Antitrypsin (AAT) is an acute-phase reactant with immunomodulatory properties that mainly inhibits neutrophil elastase. Low serum levels cause AAT deficiency (AATD), an underdiagnosed condition that predisposes to pulmonary and hepatic diseases. The SERPINA1 gene, which encodes AAT, contains >500 variants. PI∗Z and PI∗S alleles are the most diagnosed causes of AATD, but the role of the SERPINA1 haplotypes in AAT function remains unknown. SERPINA1 gene was PCR amplified from 94 patients with asthma, using primers with tails for indexing. Sequencing libraries were loaded into a MinION-Mk1C, and MinKNOW was used for basecalling and demultiplexing. Nanofilt and Minimap2 were used for filtering and mapping/alignment. Variant calling/phasing were performed with PEPPER-Margin-DeepVariant. SERPINA1 gene was 100% covered for all samples, with a minimum sequencing depth of 500×. A total of 75 single-nucleotide variants (SNVs) and 4 insertions/deletions were detected, with 45 and 2 of them highly polymorphic (minor allele frequency >0.1), respectively. Nine of the SNVs showed differences in allele frequencies when compared with the overall Spanish population. More than 90% of heterozygous SNVs were phased, yielding 91 and 58 different haplotypes for each SERPINA1 amplified region. Haplotype-based linkage disequilibrium analysis suggests that a recombination hotspot could generate variation in the SERPINA1 gene. The proposed workflow enables haplotype-aware genotyping of the SERPINA1 gene by nanopore sequencing, which will allow the development of novel AATD diagnostic strategies.
Assuntos
Frequência do Gene , Haplótipos , Sequenciamento por Nanoporos , Polimorfismo de Nucleotídeo Único , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/sangue , Sequenciamento por Nanoporos/métodos , Alelos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Asma/genética , Asma/diagnóstico , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/diagnósticoRESUMO
The astounding number of genetic variants revealed in the 15 years of genome-wide association studies of asthma has not kept pace with the goals of translational genomics. Moving asthma diagnosis from a nonspecific umbrella term to specific phenotypes/endotypes and related traits may provide insights into features that may be prevented or alleviated by therapeutical intervention. This review provides an overview of the different asthma endotypes and phenotypes and the genomic findings from asthma studies using patient stratification strategies and asthma-related traits. Asthma genomic research for treatable traits has uncovered novel and previously reported asthma loci, primarily through studies in Europeans. Novel genomic findings for asthma phenotypes and related traits may arise from multi-trait and specific phenotyping strategies in diverse populations.
Assuntos
Asma , Estudo de Associação Genômica Ampla , Humanos , Genômica , Asma/genética , FenótipoRESUMO
Asthma is the most prevalent pediatric chronic disease. Bronchodilator drug response (BDR) and fractional exhaled nitric oxide (FeNO) are clinical biomarkers of asthma. Although DNA methylation (DNAm) contributes to asthma pathogenesis, the influence of DNAm on BDR and FeNO is scarcely investigated. This study aims to identify DNAm markers in whole blood associated either with BDR or FeNO in pediatric asthma. We analyzed 121 samples from children with moderate-to-severe asthma. The association of genome-wide DNAm with BDR and FeNO has been assessed using regression models, adjusting for age, sex, ancestry, and tissue heterogeneity. Cross-tissue validation was assessed in 50 nasal samples. Differentially methylated regions (DMRs) and enrichment in traits and biological pathways were assessed. A false discovery rate (FDR) < 0.1 and a genome-wide significance threshold of p < 9 × 10-8 were used to control for false-positive results. The CpG cg12835256 (PLA2G12A) was genome-wide associated with FeNO in blood samples (coefficient= -0.015, p = 2.53 × 10-9) and nominally associated in nasal samples (coefficient = -0.015, p = 0.045). Additionally, three CpGs were suggestively associated with BDR (FDR < 0.1). We identified 12 and four DMRs associated with FeNO and BDR (FDR < 0.05), respectively. An enrichment in allergic and inflammatory processes, smoking, and aging was observed. We reported novel associations of DNAm markers associated with BDR and FeNO enriched in asthma-related processes.
RESUMO
INTRODUCTION AND OBJECTIVES: Asthma is a chronic inflammatory disease of the airways. Asthma patients may experience potentially life-threatening episodic flare-ups, known as exacerbations, which may significantly contribute to the asthma burden. The Pi*S and Pi*Z variants of the SERPINA1 gene, which usually involve alpha-1 antitrypsin (AAT) deficiency, had previously been associated with asthma. The link between AAT deficiency and asthma might be represented by the elastase/antielastase imbalance. However, their role in asthma exacerbations remains unknown. Our objective was to assess whether SERPINA1 genetic variants and reduced AAT protein levels are associated with asthma exacerbations. MATERIALS AND METHODS: In the discovery analysis, SERPINA1 Pi*S and Pi*Z variants and serum AAT levels were analyzed in 369 subjects from La Palma (Canary Islands, Spain). As replication, genomic data from two studies focused on 525 Spaniards and publicly available data from UK Biobank, FinnGen, and GWAS Catalog (Open Targets Genetics) were analyzed. The associations between SERPINA1 Pi*S and Pi*Z variants and AAT deficiency with asthma exacerbations were analyzed with logistic regression models, including age, sex, and genotype principal components as covariates. RESULTS: In the discovery, a significant association with asthma exacerbations was found for both Pi*S (odds ratio [OR]=2.38, 95% confidence interval [CI]= 1.40-4.04, p-value=0.001) and Pi*Z (OR=3.49, 95%CI=1.55-7.85, p-value=0.003)Likewise, AAT deficiency was associated with a higher risk for asthma exacerbations (OR=5.18, 95%CI=1.58-16.92, p-value=0.007) as well as AAT protein levels (OR= 0.72, 95%CI=0.57-0.91, p-value=0.005). The Pi*Z association with exacerbations was replicated in samples from Spaniards with two generations of Canary Islander origin (OR=3.79, p-value=0.028), and a significant association with asthma hospitalizations was found in the Finnish population (OR=1.12, p-value=0.007). CONCLUSIONS: AAT deficiency could be a potential therapeutic target for asthma exacerbations in specific populations.