Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
1.
Nature ; 620(7975): 762-767, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37468640

RESUMO

Electronic states in quasicrystals generally preclude a Bloch description1, rendering them fascinating and enigmatic. Owing to their complexity and scarcity, quasicrystals are underexplored relative to periodic and amorphous structures. Here we introduce a new type of highly tunable quasicrystal easily assembled from periodic components. By twisting three layers of graphene with two different twist angles, we form two mutually incommensurate moiré patterns. In contrast to many common atomic-scale quasicrystals2,3, the quasiperiodicity in our system is defined on moiré length scales of several nanometres. This 'moiré quasicrystal' allows us to tune the chemical potential and thus the electronic system between a periodic-like regime at low energies and a strongly quasiperiodic regime at higher energies, the latter hosting a large density of weakly dispersing states. Notably, in the quasiperiodic regime, we observe superconductivity near a flavour-symmetry-breaking phase transition4,5, the latter indicative of the important role that electronic interactions play in that regime. The prevalence of interacting phenomena in future systems with in situ tunability is not only useful for the study of quasiperiodic systems but may also provide insights into electronic ordering in related periodic moiré crystals6-12. We anticipate that extending this platform to engineer quasicrystals by varying the number of layers and twist angles, and by using different two-dimensional components, will lead to a new family of quantum materials to investigate the properties of strongly interacting quasicrystals.

2.
Nature ; 624(7992): 551-556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38123805

RESUMO

Moiré quantum materials host exotic electronic phenomena through enhanced internal Coulomb interactions in twisted two-dimensional heterostructures1-4. When combined with the exceptionally high electrostatic control in atomically thin materials5-8, moiré heterostructures have the potential to enable next-generation electronic devices with unprecedented functionality. However, despite extensive exploration, moiré electronic phenomena have thus far been limited to impractically low cryogenic temperatures9-14, thus precluding real-world applications of moiré quantum materials. Here we report the experimental realization and room-temperature operation of a low-power (20 pW) moiré synaptic transistor based on an asymmetric bilayer graphene/hexagonal boron nitride moiré heterostructure. The asymmetric moiré potential gives rise to robust electronic ratchet states, which enable hysteretic, non-volatile injection of charge carriers that control the conductance of the device. The asymmetric gating in dual-gated moiré heterostructures realizes diverse biorealistic neuromorphic functionalities, such as reconfigurable synaptic responses, spatiotemporal-based tempotrons and Bienenstock-Cooper-Munro input-specific adaptation. In this manner, the moiré synaptic transistor enables efficient compute-in-memory designs and edge hardware accelerators for artificial intelligence and machine learning.

3.
Nature ; 592(7852): 43-48, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790447

RESUMO

Interaction-driven spontaneous symmetry breaking lies at the heart of many quantum phases of matter. In moiré systems, broken spin/valley 'flavour' symmetry in flat bands underlies the parent state from which correlated and topological ground states ultimately emerge1-10. However, the microscopic mechanism of such flavour symmetry breaking and its connection to the low-temperature phases are not yet understood. Here we investigate the broken-symmetry many-body ground state of magic-angle twisted bilayer graphene (MATBG) and its nontrivial topology using simultaneous thermodynamic and transport measurements. We directly observe flavour symmetry breaking as pinning of the chemical potential at all integer fillings of the moiré superlattice, demonstrating the importance of flavour Hund's coupling in the many-body ground state. The topological nature of the underlying flat bands is manifested upon breaking time-reversal symmetry, where we measure energy gaps corresponding to Chern insulator states with Chern numbers 3, 2, 1 at filling factors 1, 2, 3, respectively, consistent with flavour symmetry breaking in the Hofstadter butterfly spectrum of MATBG. Moreover, concurrent measurements of resistivity and chemical potential provide the temperature-dependent charge diffusivity of MATBG in the strange-metal regime11-a quantity previously explored only in ultracold atoms12. Our results bring us one step closer to a unified framework for understanding interactions in the topological bands of MATBG, with and without a magnetic field.

4.
Nature ; 595(7868): 526-531, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290431

RESUMO

Moiré quantum matter has emerged as a materials platform in which correlated and topological phases can be explored with unprecedented control. Among them, magic-angle systems constructed from two or three layers of graphene have shown robust superconducting phases with unconventional characteristics1-5. However, direct evidence of unconventional pairing remains to be experimentally demonstrated. Here we show that magic-angle twisted trilayer graphene exhibits superconductivity up to in-plane magnetic fields in excess of 10 T, which represents a large (2-3 times) violation of the Pauli limit for conventional spin-singlet superconductors6,7. This is an unexpected observation for a system that is not predicted to have strong spin-orbit coupling. The Pauli-limit violation is observed over the entire superconducting phase, which indicates that it is not related to a possible pseudogap phase with large superconducting amplitude pairing. Notably, we observe re-entrant superconductivity at large magnetic fields, which is present over a narrower range of carrier densities and displacement fields. These findings suggest that the superconductivity in magic-angle twisted trilayer graphene is likely to be driven by a mechanism that results in non-spin-singlet Cooper pairs, and that the external magnetic field can cause transitions between phases with potentially different order parameters. Our results demonstrate the richness of moiré superconductivity and could lead to the design of next-generation exotic quantum matter.

5.
Nature ; 590(7845): 249-255, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33526935

RESUMO

Moiré superlattices1,2 have recently emerged as a platform upon which correlated physics and superconductivity can be studied with unprecedented tunability3-6. Although correlated effects have been observed in several other moiré systems7-17, magic-angle twisted bilayer graphene remains the only one in which robust superconductivity has been reproducibly measured4-6. Here we realize a moiré superconductor in magic-angle twisted trilayer graphene (MATTG)18, which has better tunability of its electronic structure and superconducting properties than magic-angle twisted bilayer graphene. Measurements of the Hall effect and quantum oscillations as a function of density and electric field enable us to determine the tunable phase boundaries of the system in the normal metallic state. Zero-magnetic-field resistivity measurements reveal that the existence of superconductivity is intimately connected to the broken-symmetry phase that emerges from two carriers per moiré unit cell. We find that the superconducting phase is suppressed and bounded at the Van Hove singularities that partially surround the broken-symmetry phase, which is difficult to reconcile with weak-coupling Bardeen-Cooper-Schrieffer theory. Moreover, the extensive in situ tunability of our system allows us to reach the ultrastrong-coupling regime, characterized by a Ginzburg-Landau coherence length that reaches the average inter-particle distance, and very large TBKT/TF values, in excess of 0.1 (where TBKT and TF are the Berezinskii-Kosterlitz-Thouless transition and Fermi temperatures, respectively). These observations suggest that MATTG can be electrically tuned close to the crossover to a two-dimensional Bose-Einstein condensate. Our results establish a family of tunable moiré superconductors that have the potential to revolutionize our fundamental understanding of and the applications for strongly coupled superconductivity.

6.
Nature ; 592(7853): 214-219, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828314

RESUMO

In the 1950s, Pomeranchuk1 predicted that, counterintuitively, liquid 3He may solidify on heating. This effect arises owing to high excess nuclear spin entropy in the solid phase, where the atoms are spatially localized. Here we find that an analogous effect occurs in magic-angle twisted bilayer graphene2-6. Using both local and global electronic entropy measurements, we show that near a filling of one electron per moiré unit cell, there is a marked increase in the electronic entropy to about 1kB per unit cell (kB is the Boltzmann constant). This large excess entropy is quenched by an in-plane magnetic field, pointing to its magnetic origin. A sharp drop in the compressibility as a function of the electron density, associated with a reset of the Fermi level back to the vicinity of the Dirac point, marks a clear boundary between two phases. We map this jump as a function of electron density, temperature and magnetic field. This reveals a phase diagram that is consistent with a Pomeranchuk-like temperature- and field-driven transition from a low-entropy electronic liquid to a high-entropy correlated state with nearly free magnetic moments. The correlated state features an unusual combination of seemingly contradictory properties, some associated with itinerant electrons-such as the absence of a thermodynamic gap, metallicity and a Dirac-like compressibility-and others associated with localized moments, such as a large entropy and its disappearance under a magnetic field. Moreover, the energy scales characterizing these two sets of properties are very different: whereas the compressibility jump has an onset at a temperature of about 30 kelvin, the bandwidth of magnetic excitations is about 3 kelvin or smaller. The hybrid nature of the present correlated state and the large separation of energy scales have implications for the thermodynamic and transport properties of the correlated states in twisted bilayer graphene.

7.
Nature ; 600(7889): 439-443, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34912084

RESUMO

Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue towards manipulating non-Abelian excitations. Early theoretical studies1-7 have predicted their existence in systems with flat Chern bands and highlighted the critical role of a particular quantum geometry. However, FCI states have been observed only in Bernal-stacked bilayer graphene (BLG) aligned with hexagonal boron nitride (hBN)8, in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field. By contrast, magic-angle twisted BLG9-12 supports flat Chern bands at zero magnetic field13-17, and therefore offers a promising route towards stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in magic-angle twisted BLG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically trivial charge density wave states. We demonstrate that, unlike the case of the BLG/hBN platform, the principal role of the weak magnetic field is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum geometry favourable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in flat moiré Chern bands.

8.
Nature ; 583(7816): E27, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32612239

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Nature ; 583(7815): 215-220, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32499644

RESUMO

The recent discovery of correlated insulator states and superconductivity in magic-angle twisted bilayer graphene1,2 has enabled the experimental investigation of electronic correlations in tunable flat-band systems realized in twisted van der Waals heterostructures3-6. This novel twist angle degree of freedom and control should be generalizable to other two-dimensional systems, which may exhibit similar correlated physics behaviour, and could enable techniques to tune and control the strength of electron-electron interactions. Here we report a highly tunable correlated system based on small-angle twisted bilayer-bilayer graphene (TBBG), consisting of two rotated sheets of Bernal-stacked bilayer graphene. We find that TBBG exhibits a rich phase diagram, with tunable correlated insulator states that are highly sensitive to both the twist angle and the application of an electric displacement field, the latter reflecting the inherent polarizability of Bernal-stacked bilayer graphene7,8. The correlated insulator states can be switched on and off by the displacement field at all integer electron fillings of the moiré unit cell. The response of these correlated states to magnetic fields suggests evidence of spin-polarized ground states, in stark contrast to magic-angle twisted bilayer graphene. Furthermore, in the regime of lower twist angles, TBBG shows multiple sets of flat bands near charge neutrality, resulting in numerous correlated states corresponding to half-filling of each of these flat bands, all of which are tunable by the displacement field as well. Our results could enable the exploration of twist-angle- and electric-field-controlled correlated phases of matter in multi-flat-band twisted superlattices.

10.
Nature ; 583(7814): 48-54, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572207

RESUMO

Observation of the neutrinoless double ß decay is the only practical way to establish that neutrinos are their own antiparticles1. Because of the small masses of neutrinos, the lifetime of neutrinoless double ß decay is expected to be at least ten orders of magnitude greater than the typical lifetimes of natural radioactive chains, which can mimic the experimental signature of neutrinoless double ß decay2. The most robust identification of neutrinoless double ß decay requires the definition of a signature signal-such as the observation of the daughter atom in the decay-that cannot be generated by radioactive backgrounds, as well as excellent energy resolution. In particular, the neutrinoless double ß decay of 136Xe could be established by detecting the daughter atom, 136Ba2+, in its doubly ionized state3-8. Here we demonstrate an important step towards a 'barium-tagging' experiment, which identifies double ß decay through the detection of a single Ba2+ ion. We propose a fluorescent bicolour indicator as the core of a sensor that can detect single Ba2+ ions in a high-pressure xenon gas detector. In a sensor made of a monolayer of such indicators, the Ba2+ dication would be captured by one of the molecules and generate a Ba2+-coordinated species with distinct photophysical properties. The presence of such a single Ba2+-coordinated indicator would be revealed by its response to repeated interrogation with a laser system, enabling the development of a sensor able to detect single Ba2+ ions in high-pressure xenon gas detectors for barium-tagging experiments.

11.
Nature ; 588(7836): 71-76, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230334

RESUMO

The constituent particles of matter can arrange themselves in various ways, giving rise to emergent phenomena that can be surprisingly rich and often cannot be understood by studying only the individual constituents. Discovering and understanding the emergence of such phenomena in quantum materials-especially those in which multiple degrees of freedom or energy scales are delicately balanced-is of fundamental interest to condensed-matter research1,2. Here we report on the surprising observation of emergent ferroelectricity in graphene-based moiré heterostructures. Ferroelectric materials show electrically switchable electric dipoles, which are usually formed by spatial separation between the average centres of positive and negative charge within the unit cell. On this basis, it is difficult to imagine graphene-a material composed of only carbon atoms-exhibiting ferroelectricity3. However, in this work we realize switchable ferroelectricity in Bernal-stacked bilayer graphene sandwiched between two hexagonal boron nitride layers. By introducing a moiré superlattice potential (via aligning bilayer graphene with the top and/or bottom boron nitride crystals), we observe prominent and robust hysteretic behaviour of the graphene resistance with an externally applied out-of-plane displacement field. Our systematic transport measurements reveal a rich and striking response as a function of displacement field and electron filling, and beyond the framework of conventional ferroelectrics. We further directly probe the ferroelectric polarization through a non-local monolayer graphene sensor. Our results suggest an unconventional, odd-parity electronic ordering in the bilayer graphene/boron nitride moiré system. This emergent moiré ferroelectricity may enable ultrafast, programmable and atomically thin carbon-based memory devices.

12.
Nature ; 578(7796): 545-549, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32103195

RESUMO

Chirality is ubiquitous in nature, and populations of opposite chiralities are surprisingly asymmetric at fundamental levels1,2. Examples range from parity violation in the subatomic weak force to homochirality in biomolecules. The ability to achieve chirality-selective synthesis (chiral induction) is of great importance in stereochemistry, molecular biology and pharmacology2. In condensed matter physics, a crystalline electronic system is geometrically chiral when it lacks mirror planes, space-inversion centres or rotoinversion axes1. Typically, geometrical chirality is predefined by the chiral lattice structure of a material, which is fixed on formation of the crystal. By contrast, in materials with gyrotropic order3-6, electrons spontaneously organize themselves to exhibit macroscopic chirality in an originally achiral lattice. Although such order-which has been proposed as the quantum analogue of cholesteric liquid crystals-has attracted considerable interest3-15, no clear observation or manipulation of gyrotropic order has been achieved so far. Here we report the realization of optical chiral induction and the observation of a gyrotropically ordered phase in the transition-metal dichalcogenide semimetal 1T-TiSe2. We show that shining mid-infrared circularly polarized light on 1T-TiSe2 while cooling it below the critical temperature leads to the preferential formation of one chiral domain. The chirality of this state is confirmed by the measurement of an out-of-plane circular photogalvanic current, the direction of which depends on the optical induction. Although the role of domain walls requires further investigation with local probes, the methodology demonstrated here can be applied to realize and control chiral electronic phases in other quantum materials4,16.

13.
Nature ; 565(7739): 337-342, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30559379

RESUMO

The electrical Hall effect is the production, upon the application of an electric field, of a transverse voltage under an out-of-plane magnetic field. Studies of the Hall effect have led to important breakthroughs, including the discoveries of Berry curvature and topological Chern invariants1,2. The internal magnetization of magnets means that the electrical Hall effect can occur in the absence of an external magnetic field2; this 'anomalous' Hall effect is important for the study of quantum magnets2-7. The electrical Hall effect has rarely been studied in non-magnetic materials without external magnetic fields, owing to the constraint of time-reversal symmetry. However, only in the linear response regime-when the Hall voltage is linearly proportional to the external electric field-does the Hall effect identically vanish as a result of time-reversal symmetry; the Hall effect in the nonlinear response regime is not subject to such symmetry constraints8-10. Here we report observations of the nonlinear Hall effect10 in electrical transport in bilayers of the non-magnetic quantum material WTe2 under time-reversal-symmetric conditions. We show that an electric current in bilayer WTe2 leads to a nonlinear Hall voltage in the absence of a magnetic field. The properties of this nonlinear Hall effect are distinct from those of the anomalous Hall effect in metals: the nonlinear Hall effect results in a quadratic, rather than linear, current-voltage characteristic and, in contrast to the anomalous Hall effect, the nonlinear Hall effect results in a much larger transverse than longitudinal voltage response, leading to a nonlinear Hall angle (the angle between the total voltage response and the applied electric field) of nearly 90 degrees. We further show that the nonlinear Hall effect provides a direct measure of the dipole moment10 of the Berry curvature, which arises from layer-polarized Dirac fermions in bilayer WTe2. Our results demonstrate a new type of Hall effect and provide a way of detecting Berry curvature in non-magnetic quantum materials.

14.
Nature ; 556(7699): 43-50, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512651

RESUMO

The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

15.
Nature ; 556(7699): 80-84, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512654

RESUMO

A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38710426

RESUMO

OBJECTIVE: To compare the preliminary efficacy of asynchronous telerehabilitation in patients after acute coronavirus disease 2019 (COVID-19) on fatigue, physical condition, quality of life, and feasibility of this pilot study with that of a booklet format. DESIGN: Randomized pilot study with 2 intervention arms: asynchronous telerehabilitation group and booklet-based rehabilitation group, with 2 follow-ups at 3 and 6 months. SETTING: Hospital. PARTICIPANTS: Patients discharged after COVID-19 were recruited and evaluated (N=35). INTERVENTIONS: The intervention consisted of a 12-week multimodal rehabilitation program via telerehabilitation or by a booklet. MAIN OUTCOME MEASURES: Fatigue as the main outcome and functional status, quality of life, and feasibility as secondary outcomes were evaluated. RESULTS: After the intervention, there was no significant difference between groups in fatigue, but there were significant differences in favor of the asynchronous telerehabilitation group for the 6-Minute Walk Test (p=.008), the 30-Second Sit-to-Stand Test (p=.019), and physical quality of life (p=.035). These improvements were maintained throughout the 6-month follow-up. Telerehabilitation was shown to be a viable option, without incidents and with a higher adhesion (p=.028) than the booklet format. CONCLUSIONS: A multimodal rehabilitation program by means of asynchronous telerehabilitation appears as a more effective option than traditional formats in improving post-acute COVID-19 sequelae.

17.
J Clin Ultrasound ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867304

RESUMO

PURPOSE: The gastrocnemius venous system presents different anatomical variants. There have been described four locations of myofascial trigger points (MTrPs) in this muscle. However, no studies have analyzed the coincidence between vessels and MTrPs present in the gastrocnemius. Therefore, the main objective was to study the anatomical variability of the venous system by ultrasound and its coincidence with the location of the MTrPs. METHODS: A total of 100 lower limbs were studied. The gastrocnemius vessels were analyzed one by one by sector (medial, central, and lateral), quantifying the number of vessels, their distribution, and the coincidence with MTrPs. RESULTS: All muscle heads showed at least one vessel per section. A large variability was observed, from one to eight vessels per muscle head, with the most frequent number being three in the gastrocnemius medialis and two in the gastrocnemius lateralis. In all cases, the location of the vessels coincided with the MTrPs. CONCLUSIONS: The proximal gastrocnemius venous pattern is very variable between subjects in number of vessels and distribution, which has made it impossible to define a "safe" approach window for invasive procedures without ultrasound guidance. The coincidence between the clinical location of MTrPs of the gastrocnemius and the presence of vessels is total.

18.
Death Stud ; 48(1): 64-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36906517

RESUMO

We developed a study to determine perceptions of death education among parents of Spanish schoolchildren aged 3-18 years. We used a qualitative approach, using focus groups and interviews in six state schools. Notable findings were death-related issues are of interest to families, parents recognized the educational potential of teaching death issues, and they called for training in the Pedagogy of Death for both themselves and teachers. In death education, it is important to take families' views into account, acknowledging their authority and contributions, to improve schools and education for both children and parents.


Assuntos
Pais , Instituições Acadêmicas , Criança , Humanos , Pesquisa Qualitativa , Grupos Focais
19.
Nat Mater ; 21(8): 877-883, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35798945

RESUMO

The discovery of correlated states and superconductivity in magic-angle twisted bilayer graphene (MATBG) established a new platform to explore interaction-driven and topological phenomena. However, despite multitudes of correlated phases observed in moiré systems, robust superconductivity appears the least common, found only in MATBG and more recently in magic-angle twisted trilayer graphene. Here we report the experimental realization of superconducting magic-angle twisted four-layer and five-layer graphene, hence establishing alternating twist magic-angle multilayer graphene as a robust family of moiré superconductors. This finding suggests that the flat bands shared by the members play a central role in the superconductivity. Our measurements in parallel magnetic fields, in particular the investigation of Pauli limit violation and spontaneous rotational symmetry breaking, reveal a clear distinction between the N = 2 and N > 2-layer structures, consistent with the difference between their orbital responses to magnetic fields. Our results expand the emergent family of moiré superconductors, providing new insight with potential implications for design of new superconducting materials platforms.

20.
Nat Mater ; 21(4): 398-403, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35087240

RESUMO

Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. Here we study the dielectric loss of hexagonal boron nitride (hBN) thin films in the microwave regime by measuring the quality factor of parallel-plate capacitors (PPCs) made of NbSe2-hBN-NbSe2 heterostructures integrated into superconducting circuits. The extracted microwave loss tangent of hBN is bounded to be at most in the mid-10-6 range in the low-temperature, single-photon regime. We integrate hBN PPCs with aluminium Josephson junctions to realize transmon qubits with coherence times reaching 25 µs, consistent with the hBN loss tangent inferred from resonator measurements. The hBN PPC reduces the qubit feature size by approximately two orders of magnitude compared with conventional all-aluminium coplanar transmons. Our results establish hBN as a promising dielectric for building high-coherence quantum circuits with substantially reduced footprint and with a high energy participation that helps to reduce unwanted qubit cross-talk.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA