Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38242087

RESUMO

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigenômica , Genômica , Glioblastoma/genética , Glioblastoma/patologia , Análise de Célula Única , Microambiente Tumoral , Heterogeneidade Genética
2.
Cell ; 186(8): 1689-1707, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059069

RESUMO

The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.


Assuntos
Neoplasias , Neurociências , Humanos , Sistema Imunitário , Neoplasias/patologia , Neurônios/patologia , Microambiente Tumoral
3.
Cell ; 181(2): 219-222, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302564

RESUMO

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Assuntos
Neoplasias/metabolismo , Sistema Nervoso/metabolismo , Humanos , Neurociências
4.
Nature ; 617(7961): 599-607, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37138086

RESUMO

Gliomas synaptically integrate into neural circuits1,2. Previous research has demonstrated bidirectional interactions between neurons and glioma cells, with neuronal activity driving glioma growth1-4 and gliomas increasing neuronal excitability2,5-8. Here we sought to determine how glioma-induced neuronal changes influence neural circuits underlying cognition and whether these interactions influence patient survival. Using intracranial brain recordings during lexical retrieval language tasks in awake humans together with site-specific tumour tissue biopsies and cell biology experiments, we find that gliomas remodel functional neural circuitry such that task-relevant neural responses activate tumour-infiltrated cortex well beyond the cortical regions that are normally recruited in the healthy brain. Site-directed biopsies from regions within the tumour that exhibit high functional connectivity between the tumour and the rest of the brain are enriched for a glioblastoma subpopulation that exhibits a distinct synaptogenic and neuronotrophic phenotype. Tumour cells from functionally connected regions secrete the synaptogenic factor thrombospondin-1, which contributes to the differential neuron-glioma interactions observed in functionally connected tumour regions compared with tumour regions with less functional connectivity. Pharmacological inhibition of thrombospondin-1 using the FDA-approved drug gabapentin decreases glioblastoma proliferation. The degree of functional connectivity between glioblastoma and the normal brain negatively affects both patient survival and performance in language tasks. These data demonstrate that high-grade gliomas functionally remodel neural circuits in the human brain, which both promotes tumour progression and impairs cognition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Vias Neurais , Humanos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Trombospondina 1/antagonistas & inibidores , Gabapentina/farmacologia , Gabapentina/uso terapêutico , Progressão da Doença , Cognição , Taxa de Sobrevida , Vigília , Biópsia , Proliferação de Células/efeitos dos fármacos
5.
Nature ; 573(7775): 539-545, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31534222

RESUMO

High-grade gliomas are lethal brain cancers whose progression is robustly regulated by neuronal activity. Activity-regulated release of growth factors promotes glioma growth, but this alone is insufficient to explain the effect that neuronal activity exerts on glioma progression. Here we show that neuron and glioma interactions include electrochemical communication through bona fide AMPA receptor-dependent neuron-glioma synapses. Neuronal activity also evokes non-synaptic activity-dependent potassium currents that are amplified by gap junction-mediated tumour interconnections, forming an electrically coupled network. Depolarization of glioma membranes assessed by in vivo optogenetics promotes proliferation, whereas pharmacologically or genetically blocking electrochemical signalling inhibits the growth of glioma xenografts and extends mouse survival. Emphasizing the positive feedback mechanisms by which gliomas increase neuronal excitability and thus activity-regulated glioma growth, human intraoperative electrocorticography demonstrates increased cortical excitability in the glioma-infiltrated brain. Together, these findings indicate that synaptic and electrical integration into neural circuits promotes glioma progression.


Assuntos
Encéfalo/fisiopatologia , Sinapses Elétricas/patologia , Fenômenos Eletrofisiológicos , Glioma/fisiopatologia , Animais , Encéfalo/citologia , Membrana Celular/patologia , Proliferação de Células , Junções Comunicantes/patologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neurônios/patologia , Optogenética , Potássio/metabolismo , Transmissão Sináptica , Células Tumorais Cultivadas
6.
Mod Pathol ; 37(6): 100488, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588881

RESUMO

Biomarker-driven therapeutic clinical trials require the implementation of standardized, evidence-based practices for sample collection. In diffuse glioma, phosphatidylinositol 3 (PI3)-kinase/AKT/mTOR (PI3/AKT/mTOR) signaling is an attractive therapeutic target for which window-of-opportunity clinical trials could facilitate the identification of promising new agents. Yet, the relevant preanalytic variables and optimal tumor sampling methods necessary to measure pathway activity are unknown. To address this, we used a murine model for isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) and human tumor tissue, including IDH-wildtype GBM and IDH-mutant diffuse glioma. First, we determined the impact of delayed time-to-formalin fixation, or cold ischemia time (CIT), on the quantitative assessment of cellular expression of 6 phosphoproteins that are readouts of PI3K/AK/mTOR activity (phosphorylated-proline-rich Akt substrate of 40 kDa (p-PRAS40, T246), -mechanistic target of rapamycin (p-mTOR; S2448); -AKT (p-AKT, S473); -ribosomal protein S6 (p-RPS6, S240/244 and S235/236), and -eukaryotic initiation factor 4E-binding protein 1 (p-4EBP1, T37/46). With CITs ≥ 2 hours, typical of routine clinical handling, all had reduced or altered expression with p-RPS6 (S240/244) exhibiting relatively greater stability. A similar pattern was observed using patient tumor samples from the operating room with p-4EBP1 more sensitive to delayed fixation than p-RPS6 (S240/244). Many clinical trials utilize unstained slides for biomarker evaluation. Thus, we evaluated the impact of slide storage conditions on the detection of p-RPS6 (S240/244), p-4EBP1, and p-AKT. After 5 months, storage at -80°C was required to preserve the expression of p-4EBP1 and p-AKT, whereas p-RPS6 (240/244) expression was not stable regardless of storage temperature. Biomarker heterogeneity impacts optimal tumor sampling. Quantification of p-RPS6 (240/244) expression in multiple regionally distinct human tumor samples from 8 patients revealed significant intratumoral heterogeneity. Thus, the accurate assessment of PI3K/AKT/mTOR signaling in diffuse glioma must overcome intratumoral heterogeneity and multiple preanalytic factors, including time-to-formalin fixation, slide storage conditions, and phosphoprotein of interest.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Glioma/patologia , Glioma/metabolismo , Glioma/genética , Camundongos , Biomarcadores Tumorais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Manejo de Espécimes/métodos
7.
J Neurooncol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834748

RESUMO

PURPOSE: Understanding the complex bidirectional interactions between neurons and glioma cells could help to identify new therapeutic targets. Herein, the techniques and application of novel neuroscience tools implemented to study the complex interactions between brain and malignant gliomas, their results, and the potential therapeutic opportunities were reviewed. METHODS: Literature search was performed on PubMed between 2001 and 2023 using the keywords "glioma", "glioblastoma", "circuit remodeling", "plasticity", "neuron networks" and "cortical networks". Studies including grade 2 to 4 gliomas, diffuse midline gliomas, and diffuse intrinsic pontine gliomas were considered. RESULTS: Glioma cells are connected through tumour microtubes and form a highly connected network within which pacemaker cells drive tumorigenesis. Unconnected cells have increased invasion capabilities. Glioma cells are also synaptically integrated within neural circuitry. Neurons promote tumour growth via paracrine and direct electrochemical mechanisms, including glutamatergic AMPA-receptors. Increased glutamate release in the tumor microenvironment and loss of peritumoral GABAergic inhibitory interneurons result in network hyperexcitability and secondary epilepsy. Functional imaging, local field potentials and subcortical mapping, performed in awake patients, have defined patterns of malignant circuit remodeling. Glioma-induced remodeling is frequent in language and even motor cortical networks, depending on tumour biological parameters, and influences functional outcomes. CONCLUSION: These data offer new insights into glioma tumorigenesis. Future work will be needed to understand how tumor intrinsic molecular drivers influence neuron-glioma interactions but also to integrate these results to design new therapeutic options for patients.

8.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34753819

RESUMO

Recent developments in the biology of malignant gliomas have demonstrated that glioma cells interact with neurons through both paracrine signaling and electrochemical synapses. Glioma-neuron interactions consequently modulate the excitability of local neuronal circuits, and it is unclear the extent to which glioma-infiltrated cortex can meaningfully participate in neural computations. For example, gliomas may result in a local disorganization of activity that impedes the transient synchronization of neural oscillations. Alternatively, glioma-infiltrated cortex may retain the ability to engage in synchronized activity in a manner similar to normal-appearing cortex but exhibit other altered spatiotemporal patterns of activity with subsequent impact on cognitive processing. Here, we use subdural electrocorticography to sample both normal-appearing and glioma-infiltrated cortex during speech. We find that glioma-infiltrated cortex engages in synchronous activity during task performance in a manner similar to normal-appearing cortex but recruits a diffuse spatial network. On a temporal scale, we show that signals from glioma-infiltrated cortex have decreased entropy, which may affect its ability to encode information during nuanced tasks such as production of monosyllabic versus polysyllabic words. Furthermore, we show that temporal decoding strategies for distinguishing monosyllabic from polysyllabic words were feasible for signals arising from normal-appearing cortex but not from glioma-infiltrated cortex. These findings inform our understanding of cognitive processing in chronic disease states and have implications for neuromodulation and prosthetics in patients with malignant gliomas.


Assuntos
Neoplasias Encefálicas/fisiopatologia , Glioma/fisiopatologia , Fala/fisiologia , Adulto , Córtex Cerebral/fisiopatologia , Eletrocorticografia/métodos , Humanos , Neurônios/fisiologia , Lobo Temporal/fisiopatologia
9.
Lancet Oncol ; 24(9): 1042-1052, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37657463

RESUMO

BACKGROUND: High-grade gliomas have a poor prognosis and do not respond well to treatment. Effective cancer immune responses depend on functional immune cells, which are typically absent from the brain. This study aimed to evaluate the safety and activity of two adenoviral vectors expressing HSV1-TK (Ad-hCMV-TK) and Flt3L (Ad-hCMV-Flt3L) in patients with high-grade glioma. METHODS: In this dose-finding, first-in-human trial, treatment-naive adults aged 18-75 years with newly identified high-grade glioma that was evaluated per immunotherapy response assessment in neuro-oncology criteria, and a Karnofsky Performance Status score of 70 or more, underwent maximal safe resection followed by injections of adenoviral vectors expressing HSV1-TK and Flt3L into the tumour bed. The study was conducted at the University of Michigan Medical School, Michigan Medicine (Ann Arbor, MI, USA). The study included six escalating doses of viral particles with starting doses of 1×1010 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort A), and then 1×1011 Ad-hCMV-TK viral particles and 1×109 Ad-hCMV-Flt3L viral particles (cohort B), 1×1010 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort C), 1×1011 Ad-hCMV-TK viral particles and 1×1010 Ad-hCMV-Flt3L viral particles (cohort D), 1×1010 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort E), and 1×1011 Ad-hCMV-TK viral particles and 1×1011 Ad-hCMV-Flt3L viral particles (cohort F) following a 3+3 design. Two 1 mL tuberculin syringes were used to deliver freehand a mix of Ad-hCMV-TK and Ad-hCMV-Flt3L vectors into the walls of the resection cavity with a total injection of 2 mL distributed as 0·1 mL per site across 20 locations. Subsequently, patients received two 14-day courses of valacyclovir (2 g orally, three times per day) at 1-3 days and 10-12 weeks after vector administration and standad upfront chemoradiotherapy. The primary endpoint was the maximum tolerated dose of Ad-hCMV-Flt3L and Ad-hCMV-TK. Overall survival was a secondary endpoint. Recruitment is complete and the trial is finished. The trial is registered with ClinicalTrials.gov, NCT01811992. FINDINGS: Between April 8, 2014, and March 13, 2019, 21 patients were assessed for eligibility and 18 patients with high-grade glioma were enrolled and included in the analysis (three patients in each of the six dose cohorts); eight patients were female and ten were male. Neuropathological examination identified 14 (78%) patients with glioblastoma, three (17%) with gliosarcoma, and one (6%) with anaplastic ependymoma. The treatment was well-tolerated, and no dose-limiting toxicity was observed. The maximum tolerated dose was not reached. The most common serious grade 3-4 adverse events across all treatment groups were wound infection (four events in two patients) and thromboembolic events (five events in four patients). One death due to an adverse event (respiratory failure) occurred but was not related to study treatment. No treatment-related deaths occurred during the study. Median overall survival was 21·3 months (95% CI 11·1-26·1). INTERPRETATION: The combination of two adenoviral vectors demonstrated safety and feasibility in patients with high-grade glioma and warrants further investigation in a phase 1b/2 clinical trial. FUNDING: Funded in part by Phase One Foundation, Los Angeles, CA, The Board of Governors at Cedars-Sinai Medical Center, Los Angeles, CA, and The Rogel Cancer Center at The University of Michigan.


Assuntos
Antineoplásicos , Glioblastoma , Glioma , Adulto , Feminino , Humanos , Masculino , Quimiorradioterapia , Terapia Genética , Glioblastoma/genética , Glioblastoma/terapia , Glioma/genética , Glioma/terapia , Adolescente , Pessoa de Meia-Idade , Idoso
10.
Acta Neuropathol ; 147(1): 3, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38079020

RESUMO

Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Criança , Pessoa de Meia-Idade , Idoso , Glioblastoma/genética , Glioblastoma/patologia , Inibidores de Checkpoint Imunológico , Homozigoto , Estudos Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Deleção de Sequência , Mutação/genética , Isocitrato Desidrogenase/genética
11.
Neurosurg Focus ; 55(2): E14, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527678

RESUMO

OBJECTIVE: Seizures are common and significantly disabling for patients with brain metastases (BMs). Although resection can provide seizure control, a subset of patients with BMs may continue to suffer seizures postoperatively. Genomic BM characteristics may influence which patients are at risk for postoperative seizures. This work explores correlations between genomic alterations and risk of postoperative seizures following BM resection. METHODS: All patients underwent BM resection at a single institution, with available clinical and sequencing data on more than 500 oncogenes. Clinical seizures were documented pre- and postoperatively. A random forest machine learning classification was used to determine candidate genomic alterations associated with postoperative seizures, and clinical and top genomic variables were correlated with postoperative seizures by using Cox proportional hazards models. RESULTS: There were 112 patients with BMs who underwent 114 surgeries and had at least 1 month of postoperative follow-up. Seizures occurred preoperatively in 26 (22.8%) patients and postoperatively in 25 (21.9%). The Engel classification achieved at 6 months for those with preoperative seizures was class I in 13 (50%); class II in 6 (23.1%); class III in 5 (19.2%), and class IV in 2 (7.7%). In those with postoperative seizures, only 8 (32.0%) had seizures preoperatively, and preoperative seizures were not a significant predictor of postoperative seizures (HR 1.84; 95% CI 0.79-4.37; p = 0.156). On random forest classification and multivariate Cox analysis controlling for factors including recurrence, extent of resection, and number of BMs, CDKN2A alterations were associated with postoperative seizures (HR 3.22; 95% CI 1.27-8.16; p = 0.014). Melanoma BMs were associated with higher risk of postoperative seizures compared with all other primary malignancies (HR 5.23; 95% CI 1.37-19.98; p = 0.016). Of 39 BMs with CDKN2A alteration, 35.9% (14/39) had postoperative seizures, compared to 14.7% (11/75) without CDKN2A alteration. The overall rate of postoperative seizures in melanoma BMs was 42.9% (15/35), compared with 12.7% (10/79) for all other primary malignancies. CONCLUSIONS: CDKN2A alterations and melanoma primary malignancy are associated with increased postoperative seizure risk following resection of BMs. These results may help guide postoperative seizure prophylaxis in patients undergoing resection of BMs.


Assuntos
Neoplasias Encefálicas , Convulsões , Humanos , Estudos Retrospectivos , Convulsões/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Genômica , Resultado do Tratamento , Inibidor p16 de Quinase Dependente de Ciclina/uso terapêutico
12.
Neurosurg Focus ; 55(2): E15, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527682

RESUMO

OBJECTIVE: The aim of this study was to investigate associations between genomic alterations in resected brain metastases and rapid local and distant CNS recurrence identified at the time of postoperative adjuvant radiosurgery. METHODS: This was a retrospective study on patients who underwent resection of intracranial brain metastases. Next-generation sequencing of more than 500 coding genes was performed on brain metastasis specimens. Postoperative and preradiosurgery MR images were compared to identify rapid recurrence. Genomic data were associated with rapid local and distant CNS recurrence of brain metastases using nominal regression analyses. RESULTS: The cohort contained 92 patients with 92 brain metastases. Thirteen (14.1%) patients had a rapid local recurrence, and 64 (69.6%) patients had rapid distant CNS progression by the time of postoperative adjuvant radiosurgery, which occurred in a median time of 25 days (range 3-85 days) from surgery. RB1 and CTNNB1 mutations were seen in 8.7% and 9.8% of the cohort, respectively, and were associated with a significantly higher risk of rapid local recurrence (RB1: OR 13.6, 95% CI 2.0-92.39, p = 0.008; and CTNNB1: OR 11.97, 95% CI 2.25-63.78, p = 0.004) on multivariate analysis. No genes were found to be associated with rapid distant CNS progression. However, the presence of extracranial disease was significantly associated with a higher risk of rapid distant recurrence on multivariate analysis (OR 4.06, 95% CI 1.08-15.34, p = 0.039). CONCLUSIONS: Genomic alterations in RB1 or CTNNB1 were associated with a significantly higher risk of rapid recurrence at the resection site. Although no genomic alterations were associated with rapid distant recurrence, having active extracranial disease was a risk factor for new lesions by the time of adjuvant radiotherapy after resection.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Humanos , Estudos Retrospectivos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Encéfalo/cirurgia , Radioterapia Adjuvante , Radiocirurgia/métodos
13.
Acta Neuropathol ; 144(4): 747-765, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945463

RESUMO

Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Neurofibromatose 1 , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patologia , Homozigoto , Humanos , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Deleção de Sequência
14.
Support Care Cancer ; 30(2): 1493-1500, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34532753

RESUMO

PURPOSE: The impact of exercise on health-related quality of life (HRQOL) in patients with glioma remains unknown. We hypothesized that glioma patients with low exercise tolerance experience more distress in HRQOL sleep and fatigue domains than patients with high tolerance to exercise. METHODS: Thirty-eight male and female patients with low- or high-grade glioma treated at a single tertiary care institution participated. Patients completed a validated telephone survey to determine their exercise habits before and following diagnosis. An unpaired t-test was run to measure the interaction between exercise tolerances on HRQOL functional and impairment domains. RESULTS: Those with low pre-morbid physical activity levels had more distress in HRQOL sleep and fatigue domains. The effects were independent of plasma brain-derived neurotrophic factor (BDNF) levels and the degree of exercise did not appear to impact plasma BDNF in adult glioma patients. CONCLUSIONS: The aim of this study was to examine the significance of exercise habits on perioperative functional outcomes in patients with low-grade or high-grade glioma. We found that glioma patients with low tolerance to exercise had more sleep disturbances and greater fatigue than glioma patients with high tolerance to exercise. Furthermore, exercise tolerance in the adult glioma population does not appear to impact plasma BDNF secretion.


Assuntos
Glioma , Qualidade de Vida , Adulto , Exercício Físico , Fadiga/epidemiologia , Feminino , Humanos , Masculino , Sono
15.
Acta Neurochir (Wien) ; 164(2): 405-417, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34970702

RESUMO

BACKGROUND: There is a concern that glioma patients undergoing repeat craniotomies are more prone to complications. The study's goal was to assess if the complication profiles for initial and repeat craniotomies were similar, to determine predictors of complications, and to compare results with those in the literature. METHODS: A retrospective study was conducted of glioma patients (WHO grade II-IV) who underwent either an initial or repeat craniotomy performed by the senior author from 2012 until 2019. Complications were recorded by discharge, 30 days, and 90 days postoperatively. New neurologic deficits were recorded by 90 days postoperatively. Multivariate regression was performed to identify factors associated with complications. A meta-analysis was performed to identify rates of complications based on number of prior craniotomies. RESULTS: Within the cohort of 714 patients, 400 (56%) had no prior craniotomies, 218 (30.5%) had undergone 1 prior craniotomy, and 96 (13.5%) had undergone ≥ 2 prior craniotomies. There were 27 surgical and 10 medical complications in 30 patients (4.2%) and 19 reoperations for complications in 19 patients (2.7%) with no deaths by 90 days. Complications, reoperation rates, and new neurologic deficits did not differ based on number of prior craniotomies. On multivariate analysis, older age (OR1.5, 95%CI 1.0-2.2) and significant leukocytosis due to steroid use (OR12.6, 95%CI 2.5-62.9) were predictors of complications. Complication rates in the cohort were lower than rates reported in the literature. CONCLUSION: Contrary to prior reports in the literature, repeat craniotomies can be as safe as initial operations if surgeons implement best practices.


Assuntos
Neoplasias Encefálicas , Glioma , Cirurgiões , Neoplasias Encefálicas/complicações , Neoplasias Encefálicas/cirurgia , Craniotomia/efeitos adversos , Craniotomia/métodos , Glioma/complicações , Glioma/cirurgia , Humanos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Estudos Retrospectivos , Resultado do Tratamento
16.
J Neurooncol ; 151(3): 491-497, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611715

RESUMO

PURPOSE: The goal of this article is to review the outcomes of insular glioma surgery and discuss strategies to minimize postoperative morbidity. METHODS: The authors reviewed the published literature on low- and high-grade insular gliomas with a focus on glioma biology, insular anatomy, and surgical technique. RESULTS: Maximal safe resection of insular gliomas is associated with improved survival and is the primary goal of surgery. Protecting patient speech and motor function during insular glioma resection requires versatile integration of insular anatomy, cortical mapping, and microsurgical technique. Both the transsylvian and transcortical corridors to the insula are associated with low morbidity profiles, but the transcortical approach with intraoperative mapping is more favorable for gliomas within the posterior insular region. CONCLUSIONS: Surgical strategy for insular gliomas is dependent on biological, anatomical, and clinical factors. Technical mastery integrated with intraoperative technologies can optimize surgical results.


Assuntos
Neoplasias Encefálicas/cirurgia , Glioma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Mapeamento Encefálico , Neoplasias Encefálicas/diagnóstico por imagem , Córtex Cerebral/cirurgia , Glioma/diagnóstico por imagem , Humanos , Resultado do Tratamento
17.
J Neurooncol ; 147(3): 515-524, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270374

RESUMO

INTRODUCTION: Multiple studies have demonstrated that improved extent of resection is associated with longer overall survival for patients with both high and low grade glioma. Awake craniotomy was developed as a technique for maximizing resection whilst preserving neurological function. METHODS: We performed a comprehensive review of the literature describing the history, indications, techniques and outcomes of awake craniotomy for patients with glioma. RESULTS: The technique of awake craniotomy evolved to become an essential tool for resection of glioma. Many perceived contraindications can now be managed. We describe in detail our preferred technique, the testing paradigms utilized, and critically review the literature regarding functional and oncological outcome. CONCLUSIONS: Awake craniotomy with mapping has become the gold standard for safely maximizing extent of resection for tumor in or near eloquent brain. Cortical and subcortical mapping methods have been refined and the technique is associated with an extremely low rate of complications.


Assuntos
Neoplasias Encefálicas/cirurgia , Craniotomia/métodos , Glioma/cirurgia , Monitorização Intraoperatória/métodos , Estimulação Elétrica , Humanos , Resultado do Tratamento
18.
J Neurooncol ; 148(1): 131-139, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32350780

RESUMO

PURPOSE: Under-enrollment in clinical trials significantly limits valid analyses of clinical interventions and generalizability of findings. Often it results in premature study termination, with estimates of 22% to 50% of clinical trials terminated due to poor accrual. Currently, there are limited reports addressing the influence of race/ethnicity and socioeconomic status on clinical trial enrollment in adult glioma patients. The goal of this study was to test the hypothesis that race and socioeconomic status negatively impact therapeutic clinical trial enrollment. METHODS: 988 adult patients were identified from the UCSF Tumor Board Registry and analyzed to determine the rate of therapeutic clinical trial screening and study enrollment. RESULTS: At initial diagnosis, 43.6% and 17.5% of glioma patients were screened and enrolled in a therapeutic clinical trial, respectively. At recurrence, 49.8% and 26.3% of patients were screened and enrolled in a clinical trial, respectively. Thirty-three percent of the study population belonged to a NIH-designated underrepresented minority group; Asian/Pacific-Islander comprised 19.6% of the overall cohort. On univariate analysis, only in-state location, distance to the hospital, and WHO grade were associated with enrollment at initial diagnosis and recurrence. Minority status, insurance type, median household income, and percent below poverty were not associated with clinical trial enrollment. CONCLUSION: Minority and socioeconomic status did not impact adult glioma clinical trial enrollment. Proximity to the tertiary care cancer center may be an important consideration for minority patients. Patient screening should be carefully considered in order to avoid bias based on minority and socioeconomic status.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Seleção de Pacientes , Fatores Raciais , Classe Social , Ensaios Clínicos como Assunto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Lasers Surg Med ; 52(9): 814-821, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32147864

RESUMO

BACKGROUND AND OBJECTIVES: Fluorescence-guided resection of glioblastomas (GBM) using 5-aminolevulinic acid (5-ALA) improves intraoperative tumor visualization and is thus widely used nowadays. During resection, different fluorescence levels can usually be distinguished within the same tumor. Recently, we demonstrated that strong, vague, and no fluorescence correspond to distinct histopathological characteristics in newly diagnosed GBM. However, the qualitative fluorescence classification by the neurosurgeon is subjective and currently no comprehensive data on interobserver variability is available. The aim of this study was thus to investigate the interobserver variability in the classification of 5-ALA fluorescence levels in newly diagnosed GBM. STUDY DESIGN/MATERIALS AND METHODS: A questionnaire investigating the interobserver variability in 5-ALA fluorescence quantification was performed at a nation-wide neurosurgical oncology meeting. The participants involved in the neurosurgical/neurooncological field were asked to categorize 30 cases of 5-ALA fluorescence images derived from GBM resection on a lecture hall screen according to the widely used three-tier fluorescence classification scheme (negative, vague, or strong fluorescence). Additionally, participants were asked for information on their medical background such as specialty, level of training, and experience with 5-ALA fluorescence-guided procedures. Interobserver agreement was defined as the calculated mean κ values for each observer. RESULTS: A total of 36 questionnaires were included in the final analysis. The mean average κ value in fluorescence classification within the entire cohort was 0.71 ± 0.12 and 29 (81%) participants had a substantial or almost perfect interobserver agreement (κ values 0.6-1.0). Interobserver agreement was significantly higher in neurosurgeons (mean κ: 0.83) as compared with non-neurosurgeons involved in the neurooncological field (mean κ: 0.52; P < 0.001). Furthermore, interobserver agreement was significantly higher in participants who had experience with at least 25 5-ALA fluorescence-guided surgeries (mean κ: 0.87) compared with less experienced colleagues (mean κ: 0.82; P = 0.039). CONCLUSION: Our study found a high interobserver agreement in the qualitative classification of different 5-ALA fluorescence levels in newly diagnosed GBM. Interobserver agreement increases significantly in more experienced participants and therefore a high level of experience is crucial for reliable intraoperative fluorescence classification. Lasers Surg. Med. © 2020 The Authors. Lasers in Surgery and Medicine published by Wiley Periodicals, Inc.


Assuntos
Ácido Aminolevulínico , Glioblastoma , Estudos de Coortes , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Variações Dependentes do Observador
20.
Acta Neurochir (Wien) ; 162(8): 1929-1939, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472378

RESUMO

The importance of genomic information in intrinsic brain tumors is highlighted in the World Health Organization (WHO) 2016 classification of gliomas, which now incorporates both phenotype and genotype data to assign a diagnosis. By using genetic markers to both categorize tumors and advise patients on prognosis, this classification system has minimized the risk of tissue sampling error, improved diagnostic accuracy, and reduced inter-rater variability. In the neurosurgical community, it is critical to understand the role genetics plays in tumor biology, what certain mutations mean for the patient's prognosis and adjuvant treatment, and how to interpret the results of sequencing data that are generated following tumor resection. In this review, we examine the critical role of genetics for diagnosis and prognosis and highlight the importance of tumor genetics for neurosurgeons caring for patients with diffuse lower grade gliomas.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Glioma/genética , Procedimentos Neurocirúrgicos/métodos , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico , Glioma/cirurgia , Humanos , Procedimentos Neurocirúrgicos/normas , Guias de Prática Clínica como Assunto , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA