Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Microbiol ; 116(2): 397-415, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33756056

RESUMO

Endolysin enzymes from bacteriophage cause bacterial lysis by degrading the peptidoglycan cell wall. The streptococcal C1 phage endolysin PlyC, is the most potent endolysin described to date and can rapidly lyse group A, C, and E streptococci. PlyC is known to bind the Group A streptococcal cell wall, but the specific molecular target or the binding site within PlyC remain uncharacterized. Here we report for the first time, that the polyrhamnose backbone of the Group A streptococcal cell wall is the binding target of PlyC. We have also characterized the putative rhamnose binding groove of PlyC and found four key residues that were critical to either the folding or the cell wall binding action of PlyC. Based on our results, we suggest that the interaction between PlyC and the cell wall may not be a high-affinity interaction as previously proposed, but rather a high avidity one, allowing for PlyC's remarkable lytic activity. Resistance to our current antibiotics is reaching crisis levels and there is an urgent need to develop the antibacterial agents with new modes of action. A detailed understanding of this potent endolysin may facilitate future developments of PlyC as a tool against the rise of antibiotic resistance.


Assuntos
Bacteriófagos/metabolismo , Endopeptidases/metabolismo , Peptidoglicano/metabolismo , Ramnose/metabolismo , Streptococcus pyogenes/virologia , Bacteriófagos/genética , Sítios de Ligação/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Endopeptidases/genética , Simulação de Acoplamento Molecular , Ligação Proteica/fisiologia , Streptococcus pyogenes/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30962344

RESUMO

The prevalence of multidrug-resistant Pseudomonas aeruginosa has stimulated development of alternative therapeutics. Bacteriophage peptidoglycan hydrolases, termed lysins, represent an emerging antimicrobial option for targeting Gram-positive bacteria. However, lysins against Gram-negatives are generally deterred by the outer membrane and their inability to work in serum. One solution involves exploiting evolved delivery systems used by colicin-like bacteriocins (e.g., S-type pyocins of P. aeruginosa) to translocate through the outer membrane. Following surface receptor binding, colicin-like bacteriocins form Tol- or TonB-dependent translocons to actively import bactericidal domains through outer membrane protein channels. With this understanding, we developed lysocins, which are bioengineered lysin-bacteriocin fusion molecules capable of periplasmic import. In our proof-of-concept studies, components from the P. aeruginosa bacteriocin pyocin S2 (PyS2) responsible for surface receptor binding and outer membrane translocation were fused to the GN4 lysin to generate the PyS2-GN4 lysocin. PyS2-GN4 delivered the GN4 lysin to the periplasm to induce peptidoglycan cleavage and log-fold killing of P. aeruginosa with minimal endotoxin release. While displaying narrow-spectrum antipseudomonal activity in human serum, PyS2-GN4 also efficiently disrupted biofilms, outperformed standard-of-care antibiotics, exhibited no cytotoxicity toward eukaryotic cells, and protected mice from P. aeruginosa challenge in a bacteremia model. In addition to targeting P. aeruginosa, lysocins can be constructed to target other prominent Gram-negative bacterial pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Membrana Externa Bacteriana/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/metabolismo , Peptidoglicano/farmacologia , Animais , Bacteriocinas/metabolismo , Bacteriófagos/metabolismo , Linhagem Celular Tumoral , Colicinas/metabolismo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Células HL-60 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Periplasma/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Piocinas/metabolismo
3.
Cell Microbiol ; 18(1): 97-110, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26247174

RESUMO

Borrelia burgdorferi surface-located membrane protein 1, also known as Lmp1, has been shown to play critical roles in pathogen evasion of host-acquired immune defences, thereby facilitating persistent infection. Lmp1 possesses three regions representing potentially discrete domains: Lmp1N, Lmp1M and Lmp1C. Because of its insignificant homology to known proteins, how Lmp1 or its specific regions contribute to microbial biology and infection remains enigmatic. Here, we show that distinct from Lmp1N and Lmp1C, Lmp1M is composed of at least 70% alpha helices and completely lacks recognizable beta sheets. The region binds to host glycosaminoglycan chondroitin-6-sulfate molecules and facilitates mammalian cell attachment, suggesting an adhesin function of Lmp1M. Phenotypic analysis of the Lmp1-deficient mutant engineered to produce Lmp1M on the microbial surface suggests that Lmp1M can independently support B. burgdorferi infectivity in murine hosts. Further exploration of functions of Lmp1 distinct regions will shed new light on the intriguing biology and infectivity of spirochetes and help develop novel interventions to combat Lyme disease.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Sulfatos de Condroitina/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Animais , Aderência Bacteriana , Camundongos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
4.
Appl Microbiol Biotechnol ; 99(2): 741-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25038926

RESUMO

The increasing rate of resistance of pathogenic bacteria, such as Staphylococcus aureus, to classical antibiotics has driven research toward identification of other means to fight infectious disease. One particularly viable option is the use of bacteriophage-encoded peptidoglycan hydrolases, called endolysins or enzybiotics. These enzymes lyse the bacterial cell wall upon direct contact, are not inhibited by traditional antibiotic resistance mechanisms, and have already shown great promise in the areas of food safety, human health, and veterinary science. We have identified and characterized an endolysin, PlyGRCS, which displays dose-dependent antimicrobial activity against both planktonic and biofilm S. aureus, including methicillin-resistant S. aureus (MRSA). The spectrum of lytic activity for this enzyme includes all S. aureus and Staphylococcus epidermidis strains tested, but not other Gram-positive pathogens. The contributions of the PlyGRCS putative catalytic and cell wall binding domains were investigated through deletion analysis. The cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) catalytic domain displayed activity by itself, though reduced, indicating the necessity of the binding domain for full activity. In contrast, the SH3_5 binding domain lacked activity but was shown to interact directly with the staphylococcal cell wall via fluorescent microscopy. Site-directed mutagenesis studies determined that the active site residues in the CHAP catalytic domain were C29 and H92, and its catalytic functionality required calcium as a co-factor. Finally, biochemical assays coupled with mass spectrometry analysis determined that PlyGRCS displays both N-acetylmuramoyl-L-alanine amidase and D-alanyl-glycyl endopeptidase hydrolytic activities despite possessing only a single catalytic domain. These results indicate that PlyGRCS has the potential to become a revolutionary therapeutic option to combat bacterial infections.


Assuntos
Bacteriófagos/enzimologia , Endopeptidases/metabolismo , Staphylococcus aureus Resistente à Meticilina/virologia , Bacteriófagos/genética , Biofilmes , Domínio Catalítico , Parede Celular/química , Dicroísmo Circular , Clonagem Molecular , Cisteína/química , Endopeptidases/genética , Histidina/química , Mutagênese Sítio-Dirigida , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Staphylococcus epidermidis/virologia
5.
Proc Natl Acad Sci U S A ; 109(31): 12752-7, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22807482

RESUMO

Bacteriophages deploy lysins that degrade the bacterial cell wall and facilitate virus egress from the host. When applied exogenously, these enzymes destroy susceptible microbes and, accordingly, have potential as therapeutic agents. The most potent lysin identified to date is PlyC, an enzyme assembled from two components (PlyCA and PlyCB) that is specific for streptococcal species. Here the structure of the PlyC holoenzyme reveals that a single PlyCA moiety is tethered to a ring-shaped assembly of eight PlyCB molecules. Structure-guided mutagenesis reveals that the bacterial cell wall binding is achieved through a cleft on PlyCB. Unexpectedly, our structural data reveal that PlyCA contains a glycoside hydrolase domain in addition to the previously recognized cysteine, histidine-dependent amidohydrolases/peptidases catalytic domain. The presence of eight cell wall-binding domains together with two catalytic domains may explain the extraordinary potency of the PlyC holoenyzme toward target bacteria.


Assuntos
Enzimas/química , Fagos de Streptococcus/enzimologia , Streptococcus equi/virologia , Proteínas Virais/química , Cristalografia por Raios X , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
6.
Biology (Basel) ; 12(10)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37886987

RESUMO

Bacteriophage endolysins degrade the bacterial peptidoglycan and are considered enzymatic alternatives to small-molecule antibiotics. In particular, the multimeric streptococcal endolysin PlyC has appealing antibacterial properties. However, a comprehensive thermal analysis of PlyC is lacking, which is necessary for evaluating its long-term stability and downstream therapeutic potential. Biochemical and kinetic-based methods were used in combination with differential scanning calorimetry to investigate the structural, kinetic, and thermodynamic stability of PlyC and its various subunits and domains. The PlyC holoenzyme structure is irreversibly compromised due to partial unfolding and aggregation at 46 °C. Unfolding of the catalytic subunit, PlyCA, instigates this event, resulting in the kinetic inactivation of the endolysin. In contrast to PlyCA, the PlyCB octamer (the cell wall-binding domain) is thermostable, denaturing at ~75 °C. The isolation of PlyCA or PlyCB alone altered their thermal properties. Contrary to the holoenzyme, PlyCA alone unfolds uncooperatively and is thermodynamically destabilized, whereas the PlyCB octamer reversibly dissociates into monomers and forms an intermediate state at 74 °C in phosphate-buffered saline with each subunit subsequently denaturing at 92 °C. Adding folded PlyCA to an intermediate state PlyCB, followed by cooling, allowed for in vitro reconstitution of the active holoenzyme.

7.
Front Microbiol ; 13: 817228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369520

RESUMO

Most skin infections, including those complicating burns, are polymicrobial involving multiple causative bacteria. Add to this the fact that many of these organisms may be antibiotic-resistant, and a simple skin lesion or burn could soon become life-threatening. Membrane-acting cationic peptides from Gram-negative bacteriophage lysins can potentially aid in addressing the urgent need for alternative therapeutics. Such peptides natively constitute an amphipathic region within the structural composition of these lysins and function to permit outer membrane permeabilization in Gram-negative bacteria when added externally. This consequently allows the lysin to access and degrade the peptidoglycan substrate, resulting in rapid hypotonic lysis and bacterial death. When separated from the lysin, some of these cationic peptides kill sensitive bacteria more effectively than the native molecule via both outer and cytoplasmic membrane disruption. In this study, we evaluated the antibacterial properties of a modified cationic peptide from the broad-acting lysin PlyPa01. The peptide, termed PaP1, exhibited potent in vitro bactericidal activity toward numerous high priority Gram-positive and Gram-negative pathogens, including all the antibiotic-resistant ESKAPE pathogens. Both planktonic and biofilm-state bacteria were sensitive to the peptide, and results from time-kill assays revealed PaP1 kills bacteria on contact. The peptide was bactericidal over a wide temperature and pH range and could withstand autoclaving without loss of activity. However, high salt concentrations and complex matrices were found to be largely inhibitory, limiting its use to topical applications. Importantly, unlike other membrane-acting antimicrobials, PaP1 lacked cytotoxicity toward human cells. Results from a murine burn wound infection model using methicillin-resistant Staphylococcus aureus or multidrug-resistant Pseudomonas aeruginosa validated the in vivo antibacterial efficacy of PaP1. In these studies, the peptide enhanced the potency of topical antibiotics used clinically for treating chronic wound infections. Despite the necessity for additional preclinical drug development, the collective data from our study support PaP1 as a potential broad-spectrum monotherapy or adjunctive therapy for the topical treatment of polymicrobial infections and provide a foundation for engineering future lysin-derived peptides with improved antibacterial properties.

8.
Comp Med ; 70(4): 328-335, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32471521

RESUMO

Corynebacterium bovis is the causative agent of Corynebacterium-associated hyperkeratosis in immunocompromised mice. The resulting skin pathology can be profound and can be associated with severe wasting, making the animals unsuitable for research. Although the administration of antibiotics is effective in resolving clinical symptoms, antibiotics do not eradicate the offending bacterium. Furthermore, antibiotic use may be contraindicated as it can affect tumor growth and is associated with Clostridioides difficile enterotoxemia in highly immunocompromised murine strains. Lysins, which are lytic enzymes obtained from bacteriophages, are novel antimicrobial agents for treating bacterial diseases. The advantage of lysins are its target specificity, with minimal off-target complications that could affect the host or the biology of the engrafted tumor. The aim of this study was to identify lysins active against C. bovis. Chemical activation of latent prophages by using mitomycin C in 3 C. bovis isolates did not cause bacteriophage induction as determined through plaque assays and transmission electron microscopy. As an alternative approach, 8 lysins associated with other bacterial species, including those from the closely related species C. falsenii, were tested for their lytic action against C. bovis but were unsuccessful. These findings were congruent with the previously reported genomic analysis of 21 C. bovis isolates, which failed to reveal bacteriophage sequences by using the PHAST and PHASTER web server tools. From these results, we suggest C. bovis is among those rare bacterial species devoid of lysogenic bacteriophages, thus making the identification of C. bovis-specific lysins more challenging. However, C. bovis may be a useful model organism for studying the effects of antiphage systems.


Assuntos
Antibacterianos/farmacocinética , Bacteriófagos/efeitos dos fármacos , Corynebacterium/virologia , Animais , Infecções por Corynebacterium/tratamento farmacológico , Hospedeiro Imunocomprometido , Camundongos , Doenças dos Roedores
9.
Sci Rep ; 10(1): 15402, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958885

RESUMO

The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.


Assuntos
Bacteriófagos/genética , Escherichia coli O157/genética , Proteínas da Cauda Viral/ultraestrutura , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidade , Domínio Catalítico , Escherichia coli O157/metabolismo , Glicosídeo Hidrolases , Especificidade da Espécie , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/metabolismo , Vírion
10.
Sci Rep ; 9(1): 7349, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089181

RESUMO

Bacteriophage tailspike proteins mediate virion absorption through reversible primary receptor binding, followed by lipopolysaccharide or exopolysaccharide degradation. The Escherichia coli O157:H7 bacteriophage CBA120 genome encodes four distinct tailspike proteins, annotated as ORFs 210 through 213. Previously, we reported the crystal structure of ORF210 (TSP1). Here we describe the crystal structure of ORF212 (TSP3) determined at 1.85 Å resolution. As observed with other tailspike proteins, TSP3 assembles into a trimer. Each subunit of TSP3 has an N-terminal head domain that is structurally similar to that of TSP1, consistent with their high amino acid sequence identity. In contrast, despite sharing a ß-helix fold, the overall structure of the C-terminal catalytic domain of TSP3 is quite different when compared to TSP1. The TSP3 structure suggests that the glycosidase active site resides in a cleft at the interface between two adjacent subunits where three acidic residues, Glu362 and Asp383 on one subunit, and Asp426 on a second subunit, are located in close proximity. Comparing the glycosidase activity of wild-type TSP3 to various point mutants revealed that catalysis requires the carboxyl groups of Glu362 and Asp426, and not of Asp383, confirming the enzyme employs two carboxyl groups to degrade lippopolysaccharide using an acid/base mechanism.


Assuntos
Bacteriófagos/química , Escherichia coli O157/virologia , Glicosídeo Hidrolases/química , Proteínas da Cauda Viral/química , Bacteriófagos/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Infecções por Escherichia coli/microbiologia , Humanos , Modelos Moleculares , Conformação Proteica
11.
Viruses ; 10(11)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445722

RESUMO

Bacteriophage-derived endolysins have gained increasing attention as potent antimicrobial agents and numerous publications document the in vivo efficacy of these enzymes in various rodent models. However, little has been documented about their safety and toxicity profiles. Here, we present preclinical safety and toxicity data for two pneumococcal endolysins, Pal and Cpl-1. Microarray, and gene profiling was performed on human macrophages and pharyngeal cells exposed to 0.5 µM of each endolysin for six hours and no change in gene expression was noted. Likewise, in mice injected with 15 mg/kg of each endolysin, no physical or behavioral changes were noted, pro-inflammatory cytokine levels remained constant, and there were no significant changes in the fecal microbiome. Neither endolysin caused complement activation via the classic pathway, the alternative pathway, or the mannose-binding lectin pathway. In cellular response assays, IgG levels in mice exposed to Pal or Cpl-1 gradually increased for the first 30 days post exposure, but IgE levels never rose above baseline, suggesting that hypersensitivity or allergic reaction is unlikely. Collectively, the safety and toxicity profiles of Pal and Cpl-1 support further preclinical studies.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Endopeptidases/administração & dosagem , Endopeptidases/efeitos adversos , Fagos de Streptococcus/enzimologia , Animais , Antibacterianos/imunologia , Anticorpos Antivirais/sangue , Endopeptidases/imunologia , Endopeptidases/toxicidade , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Imunoglobulina E/sangue , Imunoglobulina G/sangue , Macrófagos/efeitos dos fármacos , Camundongos
12.
Elife ; 52016 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-26978792

RESUMO

PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities.


Assuntos
Endopeptidases/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Fagos de Streptococcus/enzimologia , Streptococcus pyogenes/efeitos dos fármacos , Membrana Celular/metabolismo , Cristalografia por Raios X , Análise Mutacional de DNA , Endopeptidases/química , Endopeptidases/genética , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Fosfatidilserinas/metabolismo , Transporte Proteico
13.
Virology ; 477: 125-132, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25432575

RESUMO

Endolysins are lytic enzymes encoded by bacteriophage that represent an emerging class of protein therapeutics. Considering macromolecular thermoresistance correlates with shelf life, PlyG, a Bacillus anthracis endolysin, was thermally characterized to further evaluate its therapeutic potential. Results from a biophysical thermal analysis revealed full-length PlyG and its isolated domains comprised thermal denaturation temperatures exceeding 63°C. In the absence of reducing agent, PlyG was determined to be kinetically unstable, a finding hypothesized to be attributable to the chemical oxidation of cysteine and/or methionine residues. The presence of reducing agent kinetically stabilized the endolysin, with PlyG retaining at least ~50% residual lytic activity after being heated at temperatures up to 80°C and remaining enzymatically functional after being boiled. Furthermore, the endolysin had a kinetic half-life at 50°C and 55°C of 35 and 5.5h, respectively. PlyG represents a thermostable proteinaceous antibacterial with subsequent prolonged therapeutic shelf life expectancy.


Assuntos
Bacillus anthracis/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/efeitos da radiação , Proteínas Virais/química , Proteínas Virais/efeitos da radiação , Antibacterianos/química , Antibacterianos/efeitos da radiação , Estabilidade Enzimática , Cinética , Desnaturação Proteica/efeitos da radiação , Estabilidade Proteica , Temperatura
14.
Protein Eng Des Sel ; 28(4): 85-92, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25740429

RESUMO

Endolysins are bacteriophage-derived peptidoglycan hydrolases that represent an emerging class of proteinaceous therapeutics. While the streptococcal endolysin PlyC has been validated in vitro and in vivo for its therapeutic efficacy, the inherent thermosusceptible structure of the enzyme correlates to transient long-term stability, thereby hindering the feasibility of developing the enzyme as an antimicrobial. Here, we thermostabilized the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain of the PlyCA catalytic subunit of PlyC using a FoldX-driven computational protein engineering approach. Using a combination of FoldX and Rosetta algorithms, as well as visual inspection, a final list of PlyC point mutant candidates with predicted stabilizing ΔΔG values was assembled and thermally characterized. Five of the eight point mutations were found experimentally to be destabilizing, a result most likely attributable to computationally modeling a complex and dynamic nine-subunit holoenzyme with a corresponding 3.3-Å X-ray crystal structure. However, one of the mutants, PlyC (PlyCA) T406R, was shown experimentally to increase the thermal denaturation temperature by ∼2.2°C and kinetic stability 16-fold over wild type. This mutation is expected to introduce a thermally advantageous hydrogen bond between the Q106 side chain of the N-terminal glycosyl hydrolase domain and the R406 side chain of the C-terminal CHAP domain.


Assuntos
Bacteriófagos/química , Endopeptidases/química , Engenharia de Proteínas , Proteínas Virais/química , Algoritmos , Amidoidrolases/química , Amidoidrolases/genética , Bacteriófagos/genética , Biologia Computacional , Cristalografia por Raios X , Endopeptidases/genética , Estabilidade Enzimática/genética , Histidina/química , Ligação de Hidrogênio , Cinética , Mutação Puntual
15.
PLoS One ; 9(11): e112939, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25409178

RESUMO

Alginate is a polysaccharide produced by certain seaweeds and bacteria that consists of mannuronic acid and guluronic acid residues. Seaweed alginate is used in food and industrial chemical processes, while the biosynthesis of bacterial alginate is associated with pathogenic Pseudomonas aeruginosa. Alginate lyases cleave this polysaccharide into short oligo-uronates and thus have the potential to be utilized for both industrial and medicinal applications. An alginate lyase gene, algMsp, from Microbulbifer sp. 6532A, was synthesized as an E.coli codon-optimized clone. The resulting 37 kDa recombinant protein, AlgMsp, was expressed, purified and characterized. The alginate lyase displayed highest activity at pH 8 and 0.2 M NaCl. Activity of the alginate lyase was greatest at 50°C; however the enzyme was not stable over time when incubated at 50°C. The alginate lyase was still highly active at 25°C and displayed little or no loss of activity after 24 hours at 25°C. The activity of AlgMsp was not dependent on the presence of divalent cations. Comparing activity of the lyase against polymannuronic acid and polyguluronic acid substrates showed a higher turnover rate for polymannuronic acid. However, AlgMSP exhibited greater catalytic efficiency with the polyguluronic acid substrate. Prolonged AlgMsp-mediated degradation of alginate produced dimer, trimer, tetramer, and pentamer oligo-uronates.


Assuntos
Alteromonadaceae/enzimologia , Escherichia coli/genética , Polissacarídeo-Liases/química , Alteromonadaceae/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Estabilidade Enzimática , Escherichia coli/metabolismo , Ácidos Hexurônicos/metabolismo , Polissacarídeo-Liases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Especificidade por Substrato
16.
PLoS One ; 9(3): e93156, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24671238

RESUMO

Bacteriophage tailspike proteins act as primary receptors, often possessing endoglycosidase activity toward bacterial lipopolysaccharides or other exopolysaccharides, which enable phage absorption and subsequent DNA injection into the host. Phage CBA120, a contractile long-tailed Viunalikevirus phage infects the virulent Escherichia coli O157:H7. This phage encodes four putative tailspike proteins exhibiting little amino acid sequence identity, whose biological roles and substrate specificities are unknown. Here we focus on the first tailspike, TSP1, encoded by the orf210 gene. We have discovered that TSP1 is resistant to protease degradation, exhibits high thermal stability, but does not cleave the O157 antigen. An immune-dot blot has shown that TSP1 binds strongly to non-O157:H7 E. coli cells and more weakly to K. pneumoniae cells, but exhibits little binding to E. coli O157:H7 strains. To facilitate structure-function studies, we have determined the crystal structure of TSP1 to a resolution limit of 1.8 Å. Similar to other tailspikes proteins, TSP1 assembles into elongated homotrimers. The receptor binding region of each subunit adopts a right-handed parallel ß helix, reminiscent yet not identical to several known tailspike structures. The structure of the N-terminal domain that binds to the virion particle has not been seen previously. Potential endoglycosidase catalytic sites at the three subunit interfaces contain two adjacent glutamic acids, unlike any catalytic machinery observed in other tailspikes. To identify potential sugar binding sites, the crystal structures of TSP1 in complexes with glucose, α-maltose, or α-lactose were determined. These structures revealed that each sugar binds in a different location and none of the environments appears consistent with an endoglycosidase catalytic site. Such sites may serve to bind sugar units of a yet to be identified bacterial exopolysaccharide.


Assuntos
Bacteriófagos/química , Escherichia coli O157/virologia , Proteínas da Cauda Viral/química , Sítios de Ligação , Cristalografia por Raios X , Glicosídeo Hidrolases , Ligação de Hidrogênio , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína
17.
J Vis Exp ; (69)2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23169108

RESUMO

Directed evolution is defined as a method to harness natural selection in order to engineer proteins to acquire particular properties that are not associated with the protein in nature. Literature has provided numerous examples regarding the implementation of directed evolution to successfully alter molecular specificity and catalysis(1). The primary advantage of utilizing directed evolution instead of more rational-based approaches for molecular engineering relates to the volume and diversity of variants that can be screened(2). One possible application of directed evolution involves improving structural stability of bacteriolytic enzymes, such as endolysins. Bacteriophage encode and express endolysins to hydrolyze a critical covalent bond in the peptidoglycan (i.e. cell wall) of bacteria, resulting in host cell lysis and liberation of progeny virions. Notably, these enzymes possess the ability to extrinsically induce lysis to susceptible bacteria in the absence of phage and furthermore have been validated both in vitro and in vivo for their therapeutic potential(3-5). The subject of our directed evolution study involves the PlyC endolysin, which is composed of PlyCA and PlyCB subunits(6). When purified and added extrinsically, the PlyC holoenzyme lyses group A streptococci (GAS) as well as other streptococcal groups in a matter of seconds and furthermore has been validated in vivo against GAS(7). Significantly, monitoring residual enzyme kinetics after elevated temperature incubation provides distinct evidence that PlyC loses lytic activity abruptly at 45 °C, suggesting a short therapeutic shelf life, which may limit additional development of this enzyme. Further studies reveal the lack of thermal stability is only observed for the PlyCA subunit, whereas the PlyCB subunit is stable up to ~90 °C (unpublished observation). In addition to PlyC, there are several examples in literature that describe the thermolabile nature of endolysins. For example, the Staphylococcus aureus endolysin LysK and Streptococcus pneumoniae endolysins Cpl-1 and Pal lose activity spontaneously at 42 °C, 43.5 °C and 50.2 °C, respectively(8-10). According to the Arrhenius equation, which relates the rate of a chemical reaction to the temperature present in the particular system, an increase in thermostability will correlate with an increase in shelf life expectancy(11). Toward this end, directed evolution has been shown to be a useful tool for altering the thermal activity of various molecules in nature, but never has this particular technology been exploited successfully for the study of bacteriolytic enzymes. Likewise, successful accounts of progressing the structural stability of this particular class of antimicrobials altogether are nonexistent. In this video, we employ a novel methodology that uses an error-prone DNA polymerase followed by an optimized screening process using a 96 well microtiter plate format to identify mutations to the PlyCA subunit of the PlyC streptococcal endolysin that correlate to an increase in enzyme kinetic stability (Figure 1). Results after just one round of random mutagenesis suggest the methodology is generating PlyC variants that retain more than twice the residual activity when compared to wild-type (WT) PlyC after elevated temperature treatment.


Assuntos
Endopeptidases/genética , Streptococcus/enzimologia , Streptococcus/genética , Endopeptidases/química , Endopeptidases/metabolismo , Estabilidade Enzimática , Escherichia coli/enzimologia , Escherichia coli/genética , Calefação , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transformação Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA