Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cell ; 179(5): 1112-1128.e26, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730853

RESUMO

Plasmodium gene functions in mosquito and liver stages remain poorly characterized due to limitations in the throughput of phenotyping at these stages. To fill this gap, we followed more than 1,300 barcoded P. berghei mutants through the life cycle. We discover 461 genes required for efficient parasite transmission to mosquitoes through the liver stage and back into the bloodstream of mice. We analyze the screen in the context of genomic, transcriptomic, and metabolomic data by building a thermodynamic model of P. berghei liver-stage metabolism, which shows a major reprogramming of parasite metabolism to achieve rapid growth in the liver. We identify seven metabolic subsystems that become essential at the liver stages compared with asexual blood stages: type II fatty acid synthesis and elongation (FAE), tricarboxylic acid, amino sugar, heme, lipoate, and shikimate metabolism. Selected predictions from the model are individually validated in single mutants to provide future targets for drug development.


Assuntos
Genoma de Protozoário , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Fígado/parasitologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/genética , Alelos , Amino Açúcares/biossíntese , Animais , Culicidae/parasitologia , Eritrócitos/parasitologia , Ácido Graxo Sintases/metabolismo , Ácidos Graxos/metabolismo , Técnicas de Inativação de Genes , Genótipo , Modelos Biológicos , Mutação/genética , Parasitos/genética , Parasitos/crescimento & desenvolvimento , Fenótipo , Plasmodium berghei/metabolismo , Ploidias , Reprodução
2.
Mol Microbiol ; 121(6): 1095-1111, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574236

RESUMO

The protozoan parasite Plasmodium, the causative agent of malaria, undergoes an obligatory stage of intra-hepatic development before initiating a blood-stage infection. Productive invasion of hepatocytes involves the formation of a parasitophorous vacuole (PV) generated by the invagination of the host cell plasma membrane. Surrounded by the PV membrane (PVM), the parasite undergoes extensive replication. During intracellular development in the hepatocyte, the parasites provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterized by a long-lasting association of the autophagy marker protein, and ATG8 family member, LC3B with the PVM. LC3B localization at the PVM does not follow the canonical autophagy pathway since upstream events specific to canonical autophagy are dispensable. Here, we describe that LC3B localization at the PVM of Plasmodium parasites requires the V-ATPase and its interaction with ATG16L1. The WD40 domain of ATG16L1 is crucial for its recruitment to the PVM. Thus, we provide new mechanistic insight into the previously described PAAR response targeting Plasmodium liver stage parasites.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Hepatócitos , Fígado , Proteínas Associadas aos Microtúbulos , Plasmodium berghei , ATPases Vacuolares Próton-Translocadoras , Vacúolos , Vacúolos/metabolismo , Vacúolos/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium berghei/enzimologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Fígado/parasitologia , Camundongos , Hepatócitos/parasitologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Malária/parasitologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Humanos
3.
PLoS Pathog ; 19(3): e1011210, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996035

RESUMO

Plasmodium parasites have a complex life cycle alternating between a mosquito and a vertebrate host. Following the bite of an Anopheles female mosquito, Plasmodium sporozoites are transmitted from the skin to the liver; their first place of replication within the host. Successfully invaded sporozoites undergo a massive replication and growth involving asynchronous DNA replication and division that results in the generation of tens of thousands or even hundreds of thousands of merozoites depending on the Plasmodium species. The generation of a high number of daughter parasites requires biogenesis and segregation of organelles to finally reach a relatively synchronous cytokinesis event. At the end of liver stage (LS) development, merozoites are packed into merosomes and released into the bloodstream. They are then liberated and infect red blood cells to again produce merozoites by schizogony for the erythrocytic stage of the life cycle. Although parasite LS and asexual blood stage (ABS) differ in many respects, important similarities exist between the two. This review focuses on the cell division of Plasmodium parasite LS in comparison with other life cycle stages especially the parasite blood stage.


Assuntos
Fígado , Plasmodium , Animais , Citocinese , Estágios do Ciclo de Vida , Fígado/parasitologia , Merozoítos , Plasmodium/fisiologia , Pele , Esporozoítos
4.
J Cell Sci ; 134(10)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34013963

RESUMO

The intracellular lifestyle represents a challenge for the rapidly proliferating liver stage Plasmodium parasite. In order to scavenge host resources, Plasmodium has evolved the ability to target and manipulate host cell organelles. Using dynamic fluorescence-based imaging, we here show an interplay between the pre-erythrocytic stages of Plasmodium berghei and the host cell Golgi during liver stage development. Liver stage schizonts fragment the host cell Golgi into miniaturized stacks, which increases surface interactions with the parasitophorous vacuolar membrane of the parasite. Expression of specific dominant-negative Arf1 and Rab GTPases, which interfere with the host cell Golgi-linked vesicular machinery, results in developmental delay and diminished survival of liver stage parasites. Moreover, functional Rab11a is critical for the ability of the parasites to induce Golgi fragmentation. Altogether, we demonstrate that the structural integrity of the host cell Golgi and Golgi-associated vesicular traffic is important for optimal pre-erythrocytic development of P. berghei. The parasite hijacks the Golgi structure of the hepatocyte to optimize its own intracellular development. This article has an associated First Person interview with the first author of the paper.


Assuntos
Malária , Parasitos , Animais , Hepatócitos , Fígado , Plasmodium berghei , Proteínas de Protozoários
5.
Cell Microbiol ; 23(1): e13271, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32979009

RESUMO

The protozoan parasite Plasmodium, causative agent of malaria, invades hepatocytes by invaginating the host cell plasma membrane and forming a parasitophorous vacuole membrane (PVM). Surrounded by this PVM, the parasite undergoes extensive replication. Parasites inside a PVM provoke the Plasmodium-associated autophagy-related (PAAR) response. This is characterised by a long-lasting association of the autophagy marker protein LC3 with the PVM, which is not preceded by phosphatidylinositol 3-phosphate (PI3P)-labelling. Prior to productive invasion, sporozoites transmigrate several cells and here we describe that a proportion of traversing sporozoites become trapped in a transient traversal vacuole, provoking a host cell response that clearly differs from the PAAR response. These trapped sporozoites provoke PI3P-labelling of the surrounding vacuolar membrane immediately after cell entry, followed by transient LC3-labelling and elimination of the parasite by lysosomal acidification. Our data suggest that this PI3P response is not only restricted to sporozoites trapped during transmigration but also affects invaded parasites residing in a compromised vacuole. Thus, host cells can employ a pathway distinct from the previously described PAAR response to efficiently recognise and eliminate Plasmodium parasites.


Assuntos
Autofagia , Hepatócitos/parasitologia , Fosfatos de Fosfatidilinositol/metabolismo , Plasmodium berghei/metabolismo , Plasmodium berghei/parasitologia , Esporozoítos/metabolismo , Vacúolos/parasitologia , Animais , Linhagem Celular , Feminino , Células HeLa , Interações Hospedeiro-Parasita , Humanos , Malária/parasitologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Organismos Geneticamente Modificados
6.
Cell Microbiol ; 19(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28573684

RESUMO

Eukaryotic cells can employ autophagy to defend themselves against invading pathogens. Upon infection by Plasmodium berghei sporozoites, the host hepatocyte targets the invader by labelling the parasitophorous vacuole membrane (PVM) with the autophagy marker protein LC3. Until now, it has not been clear whether LC3 recruitment to the PVM is mediated by fusion of autophagosomes or by direct incorporation. To distinguish between these possibilities, we knocked out genes that are essential for autophagosome formation and for direct LC3 incorporation into membranes. The CRISPR/Cas9 system was employed to generate host cell lines deficient for either FIP200, a member of the initiation complex for autophagosome formation, or ATG5, responsible for LC3 lipidation and incorporation of LC3 into membranes. Infection of these knockout cell lines with P. berghei sporozoites revealed that LC3 recruitment to the PVM indeed depends on functional ATG5 and the elongation machinery, but not on FIP200 and the initiation complex, suggesting a direct incorporation of LC3 into the PVM. Importantly, in P. berghei-infected ATG5-/- host cells, lysosomes still accumulated at the PVM, indicating that the recruitment of lysosomes follows an LC3-independent pathway.


Assuntos
Fígado/fisiopatologia , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidade , Vacúolos/metabolismo , Autofagossomos/metabolismo , Autofagia/fisiologia , Sistemas CRISPR-Cas/fisiologia , Lisossomos/metabolismo , Transdução de Sinais/fisiologia , Esporozoítos/metabolismo
7.
Mol Microbiol ; 102(5): 775-791, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27566438

RESUMO

To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasite's ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block-face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.


Assuntos
Retículo Endoplasmático/ultraestrutura , Plasmodium berghei/ultraestrutura , Animais , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Fígado/parasitologia , Malária/parasitologia , Microscopia/métodos , Microscopia Eletrônica de Varredura , Plasmodium berghei/metabolismo , Proteínas de Protozoários/metabolismo , Resposta a Proteínas não Dobradas
8.
PLoS Pathog ; 11(3): e1004760, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25786000

RESUMO

The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.


Assuntos
Hepatócitos/microbiologia , Malária/enzimologia , Fosfolipases/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Modelos Animais de Doenças , Imunofluorescência , Hepatócitos/enzimologia , Camundongos , Plasmodium berghei/enzimologia , Plasmodium berghei/patogenicidade , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma , Vacúolos/enzimologia , Vacúolos/microbiologia
9.
Malar J ; 15: 232, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27102897

RESUMO

BACKGROUND: Bioluminescence imaging is widely used for cell-based assays and animal imaging studies, both in biomedical research and drug development. Its main advantages include its high-throughput applicability, affordability, high sensitivity, operational simplicity, and quantitative outputs. In malaria research, bioluminescence has been used for drug discovery in vivo and in vitro, exploring host-pathogen interactions, and studying multiple aspects of Plasmodium biology. While the number of fluorescent proteins available for imaging has undergone a great expansion over the last two decades, enabling simultaneous visualization of multiple molecular and cellular events, expansion of available luciferases has lagged behind. The most widely used bioluminescent probe in malaria research is the Photinus pyralis firefly luciferase, followed by the more recently introduced Click-beetle and Renilla luciferases. Ultra-sensitive imaging of Plasmodium at low parasite densities has not been previously achieved. With the purpose of overcoming these challenges, a Plasmodium berghei line expressing the novel ultra-bright luciferase enzyme NanoLuc, called PbNLuc has been generated, and is presented in this work. RESULTS: NanoLuc shows at least 150 times brighter signal than firefly luciferase in vitro, allowing single parasite detection in mosquito, liver, and sexual and asexual blood stages. As a proof-of-concept, the PbNLuc parasites were used to image parasite development in the mosquito, liver and blood stages of infection, and to specifically explore parasite liver stage egress, and pre-patency period in vivo. CONCLUSIONS: PbNLuc is a suitable parasite line for sensitive imaging of the entire Plasmodium life cycle. Its sensitivity makes it a promising line to be used as a reference for drug candidate testing, as well as the characterization of mutant parasites to explore the function of parasite proteins, host-parasite interactions, and the better understanding of Plasmodium biology. Since the substrate requirements of NanoLuc are different from those of firefly luciferase, dual bioluminescence imaging for the simultaneous characterization of two lines, or two separate biological processes, is possible, as demonstrated in this work.


Assuntos
Medições Luminescentes/métodos , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Animais , Culicidae/parasitologia , Interações Hospedeiro-Parasita , Humanos , Fígado/parasitologia , Luciferases/genética , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Plasmodium berghei/isolamento & purificação
10.
Cell Microbiol ; 14(3): 416-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22128915

RESUMO

Lipoic acid is an essential cofactor for enzymes that participate in key metabolic pathways in most organisms. While in mammalian cells lipoylated proteins reside exclusively in the mitochondria, apicomplexan parasites of the genus Plasmodium harbour two independent lipoylation pathways in the mitochondrion and the apicoplast, a second organelle of endosymbiotic origin. Protein lipoylation in the apicoplast relies on de novo lipoic acid synthesis while lipoylation of proteins in the mitochondrion depends on scavenging of lipoic acid from the host cell. Here, we analyse the impact of lipoic acid scavenging on the development of Plasmodium berghei liver stage parasites. Treatment of P. berghei-infected HepG2 cells with the lipoic acid analogue 8-bromo-octanoic acid (8-BOA) abolished lipoylation of mitochondrial enzyme complexes in the parasite while lipoylation of apicoplast proteins was not affected. Parasite growth as well as the ability of the parasites to successfully complete liver stage development by merosome formation were severely impaired but not completely blocked by 8-BOA. Liver stage parasites were most sensitive to 8-BOA treatment during schizogony, the phase of development when the parasite grows and undergoes extensive nuclear division to form a multinucleated syncytium. Live cell imaging as well as immunofluorescence analysis and electronmicroscopy studies revealed a close association of both host cell and parasite mitochondria with the parasitophorous vacuole membrane suggesting that host cell mitochondria might be involved in lipoic acid uptake by the parasite from the host cell.


Assuntos
Fígado/parasitologia , Mitocôndrias/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Ácido Tióctico/metabolismo , Caprilatos/farmacologia , Ácido Graxo Sintase Tipo II/metabolismo , Células Hep G2 , Interações Hospedeiro-Parasita , Humanos , Membranas Intracelulares/metabolismo , Metabolismo dos Lipídeos , Lipoilação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Plasmodium berghei/efeitos dos fármacos , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica , Vacúolos/metabolismo
11.
PLoS Pathog ; 6(3): e1000825, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20361051

RESUMO

Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death.


Assuntos
Inibidores de Cisteína Proteinase/genética , Hepatócitos/parasitologia , Malária/parasitologia , Plasmodium berghei/enzimologia , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Animais , Anopheles/parasitologia , Morte Celular/fisiologia , Inibidores de Cisteína Proteinase/metabolismo , Células Hep G2 , Hepatócitos/patologia , Humanos , Fígado/parasitologia , Fígado/patologia , Malária/patologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Esporozoítos/enzimologia , Esporozoítos/crescimento & desenvolvimento , Transfecção
12.
Cell Microbiol ; 13(11): 1768-82, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21801293

RESUMO

The liver stage of the Plasmodium parasite remains one of the most promising targets for intervention against malaria as it is clinically silent, precedes the symptomatic blood stage and represents a bottleneck in the parasite life cycle. However, many aspects of the development of the parasite during this stage are far from understood. During the liver stage, the parasite undergoes extensive replication, forming tens of thousands of infectious merozoites from each invading sporozoite. This implies a very efficient and accurate process of cytokinesis and thus also of organelle development and segregation. We have generated for the first time Plasmodium berghei double-fluorescent parasite lines, allowing visualization of the apicoplast, mitochondria and nuclei in live liver stage parasites. Using these we have seen that in parallel with nuclear division, the apicoplast and mitochondrion become two extensively branched and intertwining structures. The organelles then undergo impressive morphological and positional changes prior to cell division. To form merozoites, the parasite undergoes cytokinesis and the complex process of organelle development and segregation into the forming daughter merozoites could be analysed in detail using the newly generated transgenic parasites.


Assuntos
Citocinese , Fígado/parasitologia , Merozoítos/fisiologia , Organelas/fisiologia , Plasmodium berghei/fisiologia , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Merozoítos/crescimento & desenvolvimento , Microscopia de Fluorescência , Organelas/ultraestrutura , Plasmodium berghei/crescimento & desenvolvimento , Coloração e Rotulagem/métodos
13.
NPJ Vaccines ; 7(1): 139, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333336

RESUMO

Whole-sporozoite (WSp) malaria vaccines induce protective immune responses in animal malaria models and in humans. A recent clinical trial with a WSp vaccine comprising genetically attenuated parasites (GAP) which arrest growth early in the liver (PfSPZ-GA1), showed that GAPs can be safely administered to humans and immunogenicity is comparable to radiation-attenuated PfSPZ Vaccine. GAPs that arrest late in the liver stage (LA-GAP) have potential for increased potency as shown in rodent malaria models. Here we describe the generation of four putative P. falciparum LA-GAPs, generated by CRISPR/Cas9-mediated gene deletion. One out of four gene-deletion mutants produced sporozoites in sufficient numbers for further preclinical evaluation. This mutant, PfΔmei2, lacking the mei2-like RNA gene, showed late liver growth arrest in human liver-chimeric mice with human erythrocytes, absence of unwanted genetic alterations and sensitivity to antimalarial drugs. These features of PfΔmei2 make it a promising vaccine candidate, supporting further clinical evaluation. PfΔmei2 (GA2) has passed regulatory approval for safety and efficacy testing in humans based on the findings reported in this study.

14.
Cell Microbiol ; 12(5): 569-79, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20180802

RESUMO

Plasmodium parasites, the causative agents of malaria, first invade and develop within hepatocytes before infecting red blood cells and causing symptomatic disease. Because of the low infection rates in vitro and in vivo, the liver stage of Plasmodium infection is not very amenable to biochemical assays, but the large size of the parasite at this stage in comparison with Plasmodium blood stages makes it accessible to microscopic analysis. A variety of imaging techniques has been used to this aim, ranging from electron microscopy to widefield epifluorescence and laser scanning confocal microscopy. High-speed live video microscopy of fluorescent parasites in particular has radically changed our view on key events in Plasmodium liver-stage development. This includes the fate of motile sporozoites inoculated by Anopheles mosquitoes as well as the transport of merozoites within merosomes from the liver tissue into the blood vessel. It is safe to predict that in the near future the application of the latest microscopy techniques in Plasmodium research will bring important insights and allow us spectacular views of parasites during their development in the liver.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fígado/parasitologia , Malária/parasitologia , Microscopia/métodos , Plasmodium/citologia , Humanos
15.
Cell Microbiol ; 12(6): 725-39, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20039882

RESUMO

Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.


Assuntos
Antígenos de Protozoários/fisiologia , Plasmodium berghei/enzimologia , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/fisiologia , Serina Proteases/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Estágios do Ciclo de Vida , Malária/parasitologia , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Parasitemia , Plasmodium berghei/patogenicidade , Ratos , Ratos Sprague-Dawley
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 11): 1406-10, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22102243

RESUMO

The malaria parasite Plasmodium depends on the tight control of cysteine-protease activity throughout its life cycle. Recently, the characterization of a new class of potent inhibitors of cysteine proteases (ICPs) secreted by Plasmodium has been reported. Here, the recombinant production, purification and crystallization of the inhibitory C-terminal domain of ICP from P. berghei in complex with the P. falciparum haemoglobinase falcipain-2 is described. The 1:1 complex was crystallized in space group P4(3), with unit-cell parameters a = b = 71.15, c = 120.09 Å. A complete diffraction data set was collected to a resolution of 2.6 Å.


Assuntos
Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Plasmodium falciparum/química , Cristalização , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Plasmodium falciparum/metabolismo , Ligação Proteica
17.
Sci Adv ; 7(13)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762334

RESUMO

Circulating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.


Assuntos
Malária Cerebral , Parasitos , Tecido Adiposo/patologia , Animais , Criança , Humanos , Leptina , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos
18.
Biol Cell ; 101(7): 415-30, 5 p following 430, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19143588

RESUMO

BACKGROUND INFORMATION: The Plasmodium parasite, during its life cycle, undergoes three phases of asexual reproduction, these being repeated rounds of erythrocytic schizogony, sporogony within oocysts on the mosquito midgut wall and exo-erythrocytic schizogony within the hepatocyte. During each phase of asexual reproduction, the parasite must ensure that every new daughter cell contains an apicoplast, as this organelle cannot be formed de novo and is essential for parasite survival. To date, studies visualizing the apicoplast in live Plasmodium parasites have been restricted to the blood stages of Plasmodium falciparum. RESULTS: In the present study, we have generated Plasmodium berghei parasites in which GFP (green fluorescent protein) is targeted to the apicoplast using the specific targeting sequence of ACP (acyl carrier protein), which has allowed us to visualize this organelle in live Plasmodium parasites. During each phase of asexual reproduction, the apicoplast becomes highly branched, but remains as a single organelle until the completion of nuclear division, whereupon it divides and is rapidly segregated into newly forming daughter cells. We have shown that the antimicrobial agents azithromycin, clindamycin and doxycycline block development of the apicoplast during exo-erythrocytic schizogony in vitro, leading to impaired parasite maturation. CONCLUSIONS: Using a range of powerful live microscopy techniques, we show for the first time the development of a Plasmodium organelle through the entire life cycle of the parasite. Evidence is provided that interference with the development of the Plasmodium apicoplast results in the failure to produce red-blood-cell-infective merozoites.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Estágios do Ciclo de Vida , Malária/parasitologia , Plasmodium berghei/citologia , Plasmodium berghei/crescimento & desenvolvimento , Plastídeos/metabolismo , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plastídeos/genética
19.
Trends Parasitol ; 36(2): 85-87, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883707

RESUMO

A recent report by Jennison et al. reveals an important role for plasmepsin V (PMV), an aspartyl protease, in the development of malaria transmission stages. The authors showed that PMV activity is critical for protein export in these stages and that specific PMV inhibitors block parasite transmission to mosquitoes.


Assuntos
Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Malária/parasitologia , Malária/transmissão , Plasmodium/enzimologia , Animais , Antimaláricos/farmacologia , Carbamatos/farmacologia , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Estágios do Ciclo de Vida/fisiologia , Malária/prevenção & controle , Oligopeptídeos/farmacologia , Plasmodium/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
20.
mSphere ; 5(6)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361125

RESUMO

Toxoplasma gondii and members of the genus Plasmodium are obligate intracellular parasites that leave their infected host cell upon a tightly controlled process of egress. Intracellular replication of the parasites occurs within a parasitophorous vacuole, and its membrane as well as the host plasma membrane need to be disrupted during egress, leading to host cell lysis. While several parasite-derived factors governing egress have been identified, much less is known about host cell factors involved in this process. Previously, RNA interference (RNAi)-based knockdown and antibody-mediated depletion identified a host signaling cascade dependent on guanine nucleotide-binding protein subunit alpha q (GNAQ) to be required for the egress of Toxoplasma tachyzoites and Plasmodium blood stage merozoites. Here, we used CRISPR/Cas9 technology to generate HeLa cells deficient in GNAQ and tested their capacity to support the egress of T. gondii tachyzoites and Plasmodium berghei liver stage parasites. While we were able to confirm the importance of GNAQ for the egress of T. gondii, we found that the egress of P. berghei liver stages was unaffected in the absence of GNAQ. These results may reflect differences between the lytic egress process in apicomplexans and the formation of host cell-derived vesicles termed merosomes by P. berghei liver stages.IMPORTANCE The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. The knockout of GNAQ, a protein involved in G-protein-coupled receptor signaling, demonstrates the importance of this host factor for the lytic egress of T. gondii tachyzoites. Contrastingly, the egress of P. berghei is independent of GNAQ at the liver stage, indicating the existence of a mechanistically distinct strategy to exit the host cell.


Assuntos
Membrana Celular/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hepatócitos/parasitologia , Plasmodium berghei/fisiologia , Animais , Sistemas CRISPR-Cas , Células HeLa , Humanos , Malária/parasitologia , Plasmodium berghei/genética , Toxoplasma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA