Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 7(1): 7642, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794469

RESUMO

Deletion of phenylalanine 508 of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR) is a major cause of cystic fibrosis (CF), one of the most common inherited childhood diseases. ΔF508 CFTR is a trafficking mutant that is retained in the endoplasmic reticulum (ER) and unable to reach the plasma membrane. Efforts to enhance exit of ΔF508 CFTR from the ER and improve its trafficking are of utmost importance for the development of treatment strategies. Using protein interaction profiling and global bioinformatics analysis we revealed mammalian target of rapamycin (mTOR) signalling components to be associated with ∆F508 CFTR. Our results demonstrated upregulated mTOR activity in ΔF508 CF bronchial epithelial (CFBE41o-) cells. Inhibition of the Phosphatidylinositol 3-kinase/Akt/Mammalian Target of Rapamycin (PI3K/Akt/mTOR) pathway with 6 different inhibitors demonstrated an increase in CFTR stability and expression. Mechanistically, we discovered the most effective inhibitor, MK-2206 exerted a rescue effect by restoring autophagy in ΔF508 CFBE41o- cells. We identified Bcl-2-associated athanogene 3 (BAG3), a regulator of autophagy and aggresome clearance to be a potential mechanistic target of MK-2206. These data further link the CFTR defect to autophagy deficiency and demonstrate the potential of the PI3K/Akt/mTOR pathway for therapeutic targeting in CF.


Assuntos
Fibrose Cística/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular , Cromatografia Líquida , Biologia Computacional/métodos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Ontologia Genética , Humanos , Espectrometria de Massas , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Modelos Biológicos , Complexos Multiproteicos/metabolismo , Estadiamento de Neoplasias , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , RNA Interferente Pequeno/genética
2.
Cell Death Dis ; 6: e1812, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26158518

RESUMO

Breast cancer is a heterogeneous disease and approximately 70% of newly diagnosed breast cancers are estrogen receptor (ER) positive. Out of the two ER types, α and ß, ERα is the only ER that is detectable by immunohistochemistry in breast cancer biopsies and is the predominant subtype expressed in breast tumor tissue. ER-positive tumors are currently treated with anti-hormone therapy to inhibit ER signaling. It is well known that breast cancer cells can develop endocrine resistance and resistance to anti-hormone therapy and this can be facilitated via the autophagy pathway, but so far the description of a detailed autophagy expression profile of ER-positive cancer cells is missing. In the present study, we characterized tumor cell lines ectopically expressing ERα or ERß as well as the breast cancer-derived MCF-7 cell line endogenously expressing ERα but being ERß negative. We could show that ERα-expressing cells have a higher autophagic activity than cells expressing ERß and cells lacking ER expression. Additionally, for autophagy-related gene expression we describe an ERα-specific 'autophagy-footprint' that is fundamentally different to tumor cells expressing ERß or lacking ER expression. This newly described ERα-mediated and estrogen response element (ERE)-independent non-canonical autophagy pathway, which involves the function of the co-chaperone Bcl2-associated athanogene 3 (BAG3), is independent of classical mammalian target of rapamycin (mTOR) and phosphatidylinositol 3 kinase (PI3K) signaling networks and provides stress resistance in our model systems. Altogether, our study uncovers a novel non-canonical autophagy pathway that might be an interesting target for personalized medicine and treatment of ERα-positive breast cancer cells that do not respond to anti-hormone therapy and classical autophagy inhibitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Reguladoras de Apoptose/biossíntese , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/biossíntese , Neuroblastoma/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Autofagia/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/biossíntese , Receptor beta de Estrogênio/genética , Terapia de Reposição de Estrogênios , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Medicina de Precisão , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA