Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628820

RESUMO

While spaceflight is becoming more common than before, the hazards spaceflight and space microgravity pose to the human body remain relatively unexplored. Astronauts experience muscle atrophy after spaceflight, but the exact reasons for this and solutions are unknown. Here, we take advantage of the nematode C. elegans to understand the effects of space microgravity on worm body wall muscle. We found that space microgravity induces muscle atrophy in C. elegans from two independent spaceflight missions. As a comparison to spaceflight-induced muscle atrophy, we assessed the effects of acute nutritional deprivation and muscle disuse on C. elegans muscle cells. We found that these two factors also induce muscle atrophy in the nematode. Finally, we identified clp-4, which encodes a calpain protease that promotes muscle atrophy. Mutants of clp-4 suppress starvation-induced muscle atrophy. Such comparative analyses of different factors causing muscle atrophy in C. elegans could provide a way to identify novel genetic factors regulating space microgravity-induced muscle atrophy.


Assuntos
Desnutrição , Voo Espacial , Inanição , Humanos , Animais , Caenorhabditis elegans/genética , Atrofia Muscular/etiologia
2.
J Neurophysiol ; 127(5): 1230-1239, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35353615

RESUMO

Movements of the human biological system have adapted to the physical environment under the 1-g gravitational force on Earth. However, the effects of microgravity in space on the underlying functional neuromuscular control behaviors remain poorly understood. Here, we aimed to elucidate the effects of prolonged exposure to a microgravity environment on the functional coordination of multiple muscle activities. The activities of 16 lower limb muscles of 5 astronauts who stayed in space for at least 3 mo were recorded while they maintained multidirectional postural control during bipedal standing. The coordinated activation patterns of groups of muscles, i.e., muscle synergies, were estimated from the muscle activation datasets using a factorization algorithm. The experiments were repeated a total of five times for each astronaut, once before and four times after spaceflight. The compositions of muscle synergies were altered, with a constant number of synergies, after long-term exposure to microgravity, and the extent of the changes was correlated with the increased velocity of postural sway. Furthermore, the muscle synergies extracted 3 mo after the return were similar in their activation profile but not in their muscle composition compared with those extracted in the preflight condition. These results suggest that the modularity in the neuromuscular system became reorganized to adapt to the microgravity environment and then possibly reoptimized to the new sensorimotor environment after the astronauts were reexposed to a gravitational force. It is expected that muscle synergies can be used as physiological markers of the status of astronauts with gravity-dependent change.NEW & NOTEWORTHY The human neuromuscular system has adapted to the gravitational environment on Earth. Here, we demonstrated that prolonged exposure to a microgravity environment in space changes the functional coordination of multiple muscle activities regarding multidirectional standing postural control. Furthermore, the amount of change led to a greater regulatory balancing activity needed for postural control immediately after returning to Earth and differences in muscular coordination before space flight and 3 mo after the return to Earth.


Assuntos
Voo Espacial , Ausência de Peso , Astronautas , Humanos , Músculos , Equilíbrio Postural/fisiologia
3.
Am J Physiol Cell Physiol ; 314(6): C721-C731, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29513566

RESUMO

Unloading-mediated muscle atrophy is associated with increased reactive oxygen species (ROS) production. We previously demonstrated that elevated ubiquitin ligase casitas B-lineage lymphoma-b (Cbl-b) resulted in the loss of muscle volume (Nakao R, Hirasaka K, Goto J, Ishidoh K, Yamada C, Ohno A, Okumura Y, Nonaka I, Yasutomo K, Baldwin KM, Kominami E, Higashibata A, Nagano K, Tanaka K, Yasui N, Mills EM, Takeda S, Nikawa T. Mol Cell Biol 29: 4798-4811, 2009). However, the pathological role of ROS production associated with unloading-mediated muscle atrophy still remains unknown. Here, we showed that the ROS-mediated signal transduction caused by microgravity or its simulation contributes to Cbl-b expression. In L6 myotubes, the assessment of redox status revealed that oxidized glutathione was increased under microgravity conditions, and simulated microgravity caused a burst of ROS, implicating ROS as a critical upstream mediator linking to downstream atrophic signaling. ROS generation activated the ERK1/2 early-growth response protein (Egr)1/2-Cbl-b signaling pathway, an established contributing pathway to muscle volume loss. Interestingly, antioxidant treatments such as N-acetylcysteine and TEMPOL, but not catalase, blocked the clinorotation-mediated activation of ERK1/2. The increased ROS induced transcriptional activity of Egr1 and/or Egr2 to stimulate Cbl-b expression through the ERK1/2 pathway in L6 myoblasts, since treatment with Egr1/2 siRNA and an ERK1/2 inhibitor significantly suppressed clinorotation-induced Cbl-b and Egr expression, respectively. Promoter and gel mobility shift assays revealed that Cbl-b was upregulated via an Egr consensus oxidative responsive element at -110 to -60 bp of the Cbl-b promoter. Together, this indicates that under microgravity conditions, elevated ROS may be a crucial mechanotransducer in skeletal muscle cells, regulating muscle mass through Cbl-b expression activated by the ERK-Egr signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Atrofia Muscular/enzimologia , Mioblastos Esqueléticos/enzimologia , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ausência de Peso , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antioxidantes/farmacologia , Células COS , Chlorocebus aethiops , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Fatores de Transcrição de Resposta de Crescimento Precoce/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glutationa/metabolismo , Mecanotransdução Celular , Atrofia Muscular/genética , Atrofia Muscular/patologia , Atrofia Muscular/prevenção & controle , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/patologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-cbl/genética , Ratos , Voo Espacial , Fatores de Tempo , Regulação para Cima , Simulação de Ausência de Peso
4.
J Plant Res ; 131(4): 681-692, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29589195

RESUMO

This manuscript reports the production of specific polyclonal antibodies for PsPIN1, a putative auxin efflux carrier in Alaska pea (Pisum sativum L.) plants, and the cellular immunolocalization of PsPIN1. When pea seeds were set with the seed axis horizontal to the upper surface of a rockwool block, and allowed to germinate and grow for 3 days in the dark, the epicotyl grew upward. On the other hand, the application of 2,3,5-triiodobenzoic acid (TIBA) inhibited graviresponse. In the subapical epicotyl regions, PsPIN1 has been found to localize in the basal side of the plasma membrane of cells in endodermal tissues. Asymmetric PsPIN1 localization between the proximal and distal sides of the epicotyl was observed, the total amounts of PsPIN1 being more abundant in the proximal side. The asymmetric PsPIN1 distribution between the proximal and distal sides of the epicotyl was well correlated with unequal polar auxin transport as well as asymmetric accumulation of mRNA of PsPIN1 (Ueda et al. in Biol Sci Space 26:32-41, 2012; Ueda et al. in Plant Biol 16(suppl 1):43-49, 2014). In the proximal side of an apical hook, PsPIN1 localized in the basal side of the plasma membrane of cells in endodermal tissues, whereas in the distal side, the abundant distribution of PsPIN1 localized in the basal-lower (endodermal) side of the basal plasma membrane, suggesting possible lateral auxin movement from the distal side to the proximal side in this region. The application of TIBA significantly reduced the amount of PsPIN1 in the proximal side of epicotyls, but little in the distal side. These results suggest that unequal auxin transport in epicotyls during the early growth stage of etiolated pea seedlings is derived from asymmetric PsPIN1 localization in the apical hook and subapical region of epicotyls, and that asymmetric transport between the proximal and distal sides of epicotyls is required for the graviresponse of epicotyls.


Assuntos
Ácidos Indolacéticos/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Pisum sativum/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Western Blotting , Membrana Celular/metabolismo , Imuno-Histoquímica , Proteínas de Membrana Transportadoras/genética , Peptidilprolil Isomerase de Interação com NIMA/genética , Pisum sativum/anatomia & histologia , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Sementes/anatomia & histologia , Sementes/crescimento & desenvolvimento , Alinhamento de Sequência
5.
New Phytol ; 215(4): 1476-1489, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28722158

RESUMO

Roots of land plants show gravitropism and hydrotropism in response to gravity and moisture gradients, respectively, for controlling their growth orientation. Gravitropism interferes with hydrotropism, although the mechanistic aspects are poorly understood. Here, we differentiated hydrotropism from gravitropism in cucumber roots by conducting clinorotation and spaceflight experiments. We also compared mechanisms regulating hydrotropism and auxin-regulated gravitropism. Clinorotated or microgravity (µG)-grown cucumber seedling roots hydrotropically bent toward wet substrate in the presence of moisture gradients, but they grew straight in the direction of normal gravitational force at the Earth's surface (1G) on the ground or centrifuge-generated 1G in space. The roots appeared to become hydrotropically more sensitive to moisture gradients under µG conditions in space. Auxin transport inhibitors significantly reduced the hydrotropic response of clinorotated seedling roots. The auxin efflux protein CsPIN5 was differentially expressed in roots of both clinorotated and µG-grown seedlings; with higher expression in the high-humidity (concave) side than the low-humidity (convex) side of hydrotropically responding roots. Our results suggest that roots become hydrotropically sensitive in µG, and CsPIN5-mediated auxin transport has an important role in inducing root hydrotropism. Thus, hydrotropic and gravitropic responses in cucumber roots may compete via differential auxin dynamics established in response to moisture gradients and gravity.


Assuntos
Cucumis sativus/fisiologia , Gravitação , Gravitropismo/fisiologia , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Voo Espacial , Água/fisiologia , Transporte Biológico , Umidade , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Fatores de Tempo
6.
Physiol Plant ; 161(2): 285-293, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28573759

RESUMO

We investigated the effects of microgravity environment on growth and plant hormone levels in dark-grown rice shoots cultivated in artificial 1 g and microgravity conditions on the International Space Station (ISS). Growth of microgravity-grown shoots was comparable to that of 1 g-grown shoots. Endogenous levels of indole-3-acetic acid (IAA) in shoots remained constant, while those of abscisic acid (ABA), jasmonic acid (JA), cytokinins (CKs) and gibberellins (GAs) decreased during the cultivation period under both conditions. The levels of auxin, ABA, JA, CKs and GAs in rice shoots grown under microgravity conditions were comparable to those under 1 g conditions. These results suggest microgravity environment in space had minimal impact on levels of these plant hormones in rice shoots, which may be the cause of the persistence of normal growth of shoots under microgravity conditions. Concerning ethylene, the expression level of a gene for 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, the key enzyme in ethylene biosynthesis, was reduced under microgravity conditions, suggesting that microgravity may affect the ethylene production. Therefore, ethylene production may be responsive to alterations of the gravitational force.


Assuntos
Oryza/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Ausência de Peso , Expressão Gênica , Ácidos Indolacéticos/metabolismo
7.
Arch Biochem Biophys ; 594: 1-7, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874193

RESUMO

Cbl-b is a RING-type ubiquitin ligase. Previously, we showed that Cbl-b-mediated ubiquitination and proteosomal degradation of IRS-1 contribute to muscle atrophy caused by unloading stress. The phospho-pentapeptide DGpYMP (Cblin) mimics Tyr612-phosphorylated IRS-1 and inhibits the Cbl-b-mediated ubiquitination and degradation of IRS-1 in vitro and in vivo. In this study, we confirmed the direct interaction between Cblin and the TKB domain of Cbl-b using NMR. Moreover, we showed that the shortened tripeptide GpYM also binds to the TKB domain. To elucidate the inhibitory mechanism of Cblin, we solved the crystal structure of the TKB-Cblin complex at a resolution of 2.5 Å. The pY in Cblin inserts into a positively charged pocket in the TKB domain via hydrogen-bond networks and hydrophobic interactions. Within this complex, the Cblin structure closely resembles the TKB-bound form of another substrate-derived phosphopeptide, Zap-70-derived phosphopeptide. These peptides lack the conserved intrapeptidyl hydrogen bond between pY and a conserved residue involved in TKB-domain binding. Instead of the conserved interaction, these peptides specifically interact with the TKB domain. Based on this binding mode of Cblin to the TKB domain, we can design drugs against unloading-mediated muscle atrophy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Oligopeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Células HEK293 , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Modelos Moleculares , Oligopeptídeos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-cbl/antagonistas & inibidores , Ubiquitinação/efeitos dos fármacos
8.
Fukuoka Igaku Zasshi ; 104(7): 222-33, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24040694

RESUMO

Vibrio vulnificus infection can cause necrotizing fasciitis and sepsis and can develop within a few days despite intensive care. The mortality rate is up to 60% in vulnerable people. Most patients infected with this microbe have chronic liver disease, especially liver cirrhosis or cancer, as an underlying disease. V. vulnificus infection is opportunistic, and there is an urgent need to develop an anti- V. vulnificus vaccine. Thus, it is important to identify immunogenic antigens. We collected human sera from three subject groups: patients with V. vulnificus infection, patients with chronic liver disease but without V. vulnificus infection, and healthy volunteers with normal liver function. Immunoblots of cytosolic and membrane proteins of seven strains of V. vulnificus and one of V. parahaemolyticus were performed with sera from these groups. Although we could not demonstrate differences in antibody response between the groups, all sera showed a strong antibody response to a 62-kDa protein that was common to all strains examined. Immunoblots of Escherichia coli and Klebsiella pneumoniae also showed strong antibody response to this 62-kDa protein, and the possibility of cross-reaction cannot be denied. We identified this 62-kDa protein as an immunogenic antigen of V. vulnificus for humans.


Assuntos
Antígenos de Bactérias/isolamento & purificação , Vibrioses/imunologia , Vibrio vulnificus/imunologia , Idoso , Feminino , Humanos , Immunoblotting , Masculino
9.
Life Sci Space Res (Amst) ; 36: 138-146, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36682823

RESUMO

Functional relationships between endogenous levels of plant hormones in the growth and development of shoots in etiolated Alaska pea and etiolated Golden Cross Bantam maize seedlings under different gravities were investigated in the "Auxin Transport" experiment aboard the International Space Station (ISS). Comprehensive analyses of 31 species of plant hormones of pea and maize seedlings grown under microgravity (µg) in space and 1 g conditions were conducted. Principal component analysis (PCA) and a multiple regression analysis with the dataset from the plant hormone analysis of the etiolated pea seedlings grown under µg and 1 g conditions in the presence and absence of 2,3,5-triiodobenzoic acid (TIBA) revealed endogenous levels of auxin correlated positively with bending and length of epicotyls. Endogenous cytokinins correlated negatively with them. These results suggest an interaction of auxin and cytokinins in automorphogenesis and growth inhibition of etiolated Alaska pea epicotyls grown under µg conditions in space. Less polar auxin transport with reduced endogenous levels of auxin increased endogenous levels of cytokinins, resulting in changing the growth direction of epicotyls and inhibiting growth. On the other hand, almost no close relationship between endogenous plant hormone levels and growth and development in etiolated maize seedlings grown was observed under µg conditions in space, as per Schulze et al. (1992). However, endogenous levels of IAA in the seedlings grown under µg conditions in space were significantly higher than those grown on Earth, similar to the cases of polar auxin transport already reported.


Assuntos
Voo Espacial , Ausência de Peso , Reguladores de Crescimento de Plantas , Plântula , Zea mays , Pisum sativum , Ácidos Indolacéticos/farmacologia , Citocininas
10.
iScience ; 26(11): 108177, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38107876

RESUMO

Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.

11.
iScience ; 25(2): 103762, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35141505

RESUMO

Progressive neuromuscular decline in microgravity is a prominent health concern preventing interplanetary human habitation. We establish functional dopamine-mediated impairments as a consistent feature across multiple spaceflight exposures and during simulated microgravity in C. elegans. Animals grown continuously in these conditions display reduced movement and body length. Loss of mechanical contact stimuli in microgravity elicits decreased endogenous dopamine and comt-4 (catechol-O-methyl transferase) expression levels. The application of exogenous dopamine reverses the movement and body length defects caused by simulated microgravity. In addition, increased physical contact made comt-4 and dopamine levels rise. It also increased muscular cytoplasmic Ca2+ firing. In dop-3 (D2-like receptor) mutants, neither decrease in movement nor in body length were observed during simulated microgravity growth. These results strongly suggest that targeting the dopamine system through manipulation of the external environment (contact stimuli) prevents muscular changes and is a realistic and viable treatment strategy to promote safe human deep-space travel.

12.
Muscle Nerve ; 43(2): 223-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21254087

RESUMO

Deficiency of the Cbl-b ubiquitin ligase gene activates macrophages in mice. This study aimed to elucidate the pathophysiological roles of macrophages in muscle degeneration/regeneration in Cbl-b-deficient mice. We examined immune cell infiltration and cytokine expression in cardiotoxin-injected tibialis anterior muscle of Cbl-b-deficient mice. Ablation of the Cbl-b gene expression delayed regeneration of cardiotoxin-induced skeletal muscle damage compared with wild-type mice. CD8-positive T cells were still present in the damaged muscle on day 14 after cardiotoxin injection in Cbl-b-deficient mice, but there was dispersal of the same cells over that time-frame in wild-type mice. Infiltrating macrophages in Cbl-b-deficient mice showed strong expression of RANTES (regulated-on-activation, normal T cell expressed and secreted), a chemokine for CD8-positive T cells. In turn, a neutralizing antibody against RANTES significantly suppressed the infiltration of CD8-positive T cells into the muscle, resulting in restoration of the disturbed muscle regeneration. Cbl-b is an important regulatory factor for cytotoxic T-cell infiltration via RANTES production in macrophages.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Cardiotoxinas/farmacologia , Quimiocina CCL5/metabolismo , Macrófagos/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/patologia , Proteínas Proto-Oncogênicas c-cbl/deficiência , Regeneração/efeitos dos fármacos , Análise de Variância , Animais , Anticorpos/farmacologia , Antígenos CD/metabolismo , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Doenças Musculares/fisiopatologia , Fatores de Regulação Miogênica , RNA Mensageiro/metabolismo , Regeneração/genética , Fatores de Tempo
13.
NPJ Microgravity ; 7(1): 33, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471121

RESUMO

Epigenetic changes during long-term spaceflight are beginning to be studied by NASA's twin astronauts and other model organisms. Here, we evaluate the epigenetic regulation of gene expression in space-flown C. elegans by comparing wild type and histone deacetylase (hda)-4 mutants. Expression levels of 39 genes were consistently upregulated in all four generations of adult hda-4 mutants grown under microgravity compared with artificial Earth-like gravity (1G). In contrast, in the wild type, microgravity-induced upregulation of these genes occurred a little. Among these genes, 11 contain the domain of unknown function 19 (DUF-19) and are located in a cluster on chromosome V. When compared with the 1G condition, histone H3 trimethylation at lysine 27 (H3K27me3) increased under microgravity in the DUF-19 containing genes T20D4.12 to 4.10 locus in wild-type adults. On the other hand, this increase was also observed in the hda-4 mutant, but the level was significantly reduced. The body length of wild-type adults decreased slightly but significantly when grown under microgravity. This decrease was even more pronounced with the hda-4 mutant. In ground-based experiments, one of the T20D4.11 overexpressing strains significantly reduced body length and also caused larval growth retardation and arrest. These results indicate that under microgravity, C. elegans activates histone deacetylase HDA-4 to suppress overregulation of several genes, including the DUF-19 family. In other words, the expression of certain genes, including negative regulators of growth and development, is epigenetically fine-tuned to adapt to the space microgravity.

14.
NPJ Microgravity ; 7(1): 18, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039989

RESUMO

The musculoskeletal system provides the body with correct posture, support, stability, and mobility. It is composed of the bones, muscles, cartilage, tendons, ligaments, joints, and other connective tissues. Without effective countermeasures, prolonged spaceflight under microgravity results in marked muscle and bone atrophy. The molecular and physiological mechanisms of this atrophy under unloaded conditions are gradually being revealed through spaceflight experiments conducted by the Japan Aerospace Exploration Agency using a variety of model organisms, including both aquatic and terrestrial animals, and terrestrial experiments conducted under the Living in Space project of the Japan Ministry of Education, Culture, Sports, Science, and Technology. Increasing our knowledge in this field will lead not only to an understanding of how to prevent muscle and bone atrophy in humans undergoing long-term space voyages but also to an understanding of countermeasures against age-related locomotive syndrome in the elderly.

15.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34117068

RESUMO

Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.

17.
Funct Plant Biol ; 47(12): 1062-1072, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32635987

RESUMO

In the International Space Station experiment 'Auxin Transport', polar auxin transport (PAT) in shoots of etiolated maize (Zea mays L. cv. Golden Cross Bantam) grown under microgravity in space was substantially enhanced compared with those grown on Earth. To clarify the mechanism, the effects of microgravity on expression of ZmPIN1a encoding essential auxin efflux carrier and cellular localisation of its products were investigated. The amounts of ZmPIN1a mRNA in the coleoptiles and the mesocotyls in space-grown seedlings were almost the same as those in 1 g-grown seedlings, but its products were not. Immunohistochemical analysis with anti-ZmPIN1a antibody revealed a majority of ZmPIN1a localised in the basal side of plasma membranes of endodermal cells in the coleoptiles and the mesocotyls, and in the basal and lateral sides of plasma membranes in coleoptile parenchymatous cells, in which it directed towards the radial direction, but not towards the vascular bundle direction. Microgravity dramatically altered ZmPIN1a localisation in plasma membranes in coleoptile parenchymatous cells, shifting mainly towards the vascular bundle direction. These results suggest that mechanism of microgravity-enhanced PAT in maize shoots is more likely to be due to the enhanced ZmPIN1a accumulation and the altered ZmPIN1a localisation in parenchymatous cells of the coleoptiles.


Assuntos
Voo Espacial , Ausência de Peso , Membrana Celular , Ácidos Indolacéticos , Pisum sativum , Plântula , Zea mays
18.
Life Sci Space Res (Amst) ; 26: 55-61, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32718687

RESUMO

This paper introduces the use of microarray data technology with Medicago (Medicago truncatula) microarrays to characterize global changes in the transcript abundance of etiolated Alaska pea (Pisum sativum L.) seedlings grown under microgravity (µg) conditions in comparison with those under artificial 1 g conditions on the International Space Station. Of the 44,000 genes of the Medicago microarray platform, more than 25,000 transcripts of pea seedlings were hybridized, suggesting that the microarray platform for Medicago could be useful in the study of gene expression of etiolated pea seedlings grown under µg conditions in space. Gene array data were analyzed according to stringent criteria that restricted the scored genes for specific hybridization values at least twofold. Expression of 1362 and 1558 genes in proximal side (the proximal side) and distal side of the epicotyl to the cotyledons (the distal side), respectively, were highly affected by µg conditions in space. Of the genes analyzed, 407 of 1362 transcripts in the proximal side and 740 of 1558 transcripts in the distal side were expressed at ratios at least twofold. However, in the presence of the auxin transport inhibitor TIBA, 212 of 399 transcripts and 255 of 477 transcripts were expressed at ratios at least twofold as high in the proximal and the distal sides of epicotyls in the seedlings grown under µg conditions, respectively. Based on Venn diagram analysis, 31 transcripts and 24 transcripts were found to commonly increase and decrease, respectively, under µg conditions in space. Venn analysis revealed six auxin-related genes and three water channel AQUAPORIN genes that were responsive to gravity. Among 6 auxin-related genes, the accumulation of transcripts of Auxin-induced protein 5NG4 and Indole-3-acetic acid-amido synthetase GH3.3 tended to increase, and that of Auxin-induced protein, Auxin response factor, SAUR-like auxin-responsive family protein and Auxin response factor tended to decrease under µg conditions, whereas there were no statistic differences between under µg and artificial 1 g conditions. Similarly there were no statistic differences between under µg conditions and artificial 1 g, but the accumulation of NIP3-1 and Plasma membrane intrinsic protein11, and AQUAPORIN1/Tonoplast intrinsic protein tended to increase and decrease, respectively. A possible role of auxin-related genes and AQUAPORIN genes in regulating growth of etiolated pea seedlings grown under µg conditions in space is discussed.


Assuntos
Expressão Gênica , Pisum sativum/genética , Proteínas de Plantas/genética , Voo Espacial , Ausência de Peso , Estiolamento , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Análise Serial de Proteínas , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
19.
Biol Sci Space ; 23(4): 183-187, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20729992

RESUMO

We have started a space experiment using an experimental organism, the nematode Caenorhabditis elegans, in the Japanese Experiment Module, KIBO, of the International Space Station (ISS). The specimens were boarded by space shuttle Atlantis on mission STS-129 which launched from NASA Kennedy Space Center on November 16, 2009. The purpose of the experiment was several-fold: (i) to verify the efficacy of RNA interference (RNAi) in space, (ii) to monitor transcriptional and post-translational alterations in the entire genome in space, and (iii) to investigate mechanisms regulating and countermeasures for muscle alterations in response to the space environment. In particular, this will be the first study to utilize RNAi in space.

20.
Life Sci Space Res (Amst) ; 20: 1-11, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30797426

RESUMO

We conducted "Auxin Transport" space experiments in 2016 and 2017 in the Japanese Experiment Module (JEM) on the International Space Station (ISS), with the principal objective being integrated analyses of the growth and development of etiolated pea (Pisum sativum L. cv Alaska) and maize (Zea mays L. cv Golden Cross Bantam) seedlings under true microgravity conditions in space relative to auxin dynamics. Etiolated pea seedlings grown under microgravity conditions in space for 3 days showed automorphogenesis. Epicotyls and roots bent ca. 45° and 20° toward the direction away from the cotyledons, respectively, whereas those grown under artificial 1 g conditions produced by a centrifuge in the Cell Biology Experimental Facility (CBEF) in space showed negative and positive gravitropic response in epicotyls and in roots, respectively. On the other hand, the coleoptiles of 4-day-old etiolated maize seedlings grew almost straight, but the mesocotyls curved and grew toward a random direction under microgravity conditions in space. In contrast, the coleoptiles and mesocotyls of etiolated maize seedlings grown under 1 g conditions on Earth were almost straight and grew upward or toward the direction against the gravity vector. The polar auxin transport activity in etiolated pea epicotyls and in maize shoots was significantly inhibited and enhanced, respectively, under microgravity conditions in space as compared with artificial 1 g conditions in space or 1 g conditions on Earth. An inhibitor of polar auxin transport, 2,3,5-triiodobenzoic acid (TIBA) substantially affected the growth direction and polar auxin transport activity in etiolated pea seedlings grown under both artificial 1 g and microgravity conditions in space. These results strongly suggest that adequate polar auxin transport is essential for gravitropic response in plants. Possible mechanisms enhancing polar auxin transport in etiolated maize seedlings grown under microgravity conditions in space are also proposed.


Assuntos
Gravitropismo , Ácidos Indolacéticos/metabolismo , Pisum sativum/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Transporte Biológico , Ácidos Indolacéticos/farmacologia , Pisum sativum/efeitos dos fármacos , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Simulação de Ausência de Peso , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA