Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518533

RESUMO

Vascular endothelial growth factor receptor-3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell-specific depletion of integrin-linked kinase (ILK) in mouse embryos hyper-activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)-specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and ß1 integrin in vitro and in vivo, and endothelial cell-specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and ß1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with ß1 integrin and thus ensures proper development of lymphatic vessels.


Assuntos
Integrina beta1/metabolismo , Linfangiogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
2.
J Clin Invest ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888964

RESUMO

The ß-secretase BACE1 is a central drug target for Alzheimer's disease. Clinically tested, BACE1-directed inhibitors also block the homologous protease BACE2. Yet, little is known about physiological BACE2 substrates and functions in vivo. Here, we identify BACE2 as the protease shedding the lymphangiogenic vascular endothelial growth factor receptor 3 (VEGFR3). Inactivation of BACE2, but not BACE1, inhibited shedding of VEGFR3 from primary human lymphatic endothelial cells (LECs) and reduced release of the shed, soluble VEGFR3 (sVEGFR3) ectodomain into the blood of mice, non-human primates and humans. Functionally, BACE2 inactivation increased full-length VEGFR3 and enhanced VEGFR3 signaling in LECs and also in vivo in zebrafish, where enhanced migration of LECs was observed. Thus, this study identifies BACE2 as a modulator of lymphangiogenic VEGFR3 signaling and demonstrates the utility of sVEGFR3 as a pharmacodynamic plasma marker for BACE2 activity in vivo, a prerequisite for developing BACE1-selective inhibitors for a safer prevention of Alzheimer's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA