Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 621
Filtrar
1.
J Appl Toxicol ; 44(4): 564-581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37950573

RESUMO

The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 µm, GSD 2.25. The average concentration of PM2.5 was 25.21 µg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.


Assuntos
Poluição do Ar em Ambientes Fechados , Neoplasias Pulmonares , Nanotubos de Carbono , Tiogalactosídeos , Humanos , Material Particulado/toxicidade , Poliésteres , Pulmão , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Tamanho da Partícula , Poluição do Ar em Ambientes Fechados/análise
2.
Mol Psychiatry ; 27(1): 335-353, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33531661

RESUMO

Individual differences in human intelligence, as assessed using cognitive test scores, have a well-replicated, hierarchical phenotypic covariance structure. They are substantially stable across the life course, and are predictive of educational, social, and health outcomes. From this solid phenotypic foundation and importance for life, comes an interest in the environmental, social, and genetic aetiologies of intelligence, and in the foundations of intelligence differences in brain structure and functioning. Here, we summarise and critique the last 10 years or so of molecular genetic (DNA-based) research on intelligence, including the discovery of genetic loci associated with intelligence, DNA-based heritability, and intelligence's genetic correlations with other traits. We summarise new brain imaging-intelligence findings, including whole-brain associations and grey and white matter associations. We summarise regional brain imaging associations with intelligence and interpret these with respect to theoretical accounts. We address research that combines genetics and brain imaging in studying intelligence differences. There are new, though modest, associations in all these areas, and mechanistic accounts are lacking. We attempt to identify growing points that might contribute toward a more integrated 'systems biology' account of some of the between-individual differences in intelligence.


Assuntos
Inteligência , Substância Branca , Encéfalo/diagnóstico por imagem , Variação Genética/genética , Humanos , Inteligência/genética , Testes Neuropsicológicos
3.
Behav Brain Sci ; 46: e230, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37695008

RESUMO

We contend that social science variables are the product of multiple partly heritable traits. Genetic associations with socioeconomic status (SES) may differ across populations, but this is a consequence of the intermediary traits associated with SES differences also varying. Furthermore, genetic data allow social scientists to make causal statements regarding the aetiology and consequences of SES.


Assuntos
Classe Social , Ciências Sociais , Humanos
4.
Am J Hum Genet ; 105(2): 334-350, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374203

RESUMO

Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected ("concordant") direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive ("discordant") relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10-8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms-early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways-that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness.


Assuntos
Transtornos Cognitivos/fisiopatologia , Cognição/fisiologia , Escolaridade , Transtornos do Neurodesenvolvimento/etiologia , Polimorfismo de Nucleotídeo Único , Esquizofrenia/fisiopatologia , Transmissão Sináptica , Adulto , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Transtornos do Neurodesenvolvimento/patologia
5.
Am J Hum Genet ; 104(1): 112-138, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30595373

RESUMO

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.


Assuntos
DNA Mitocondrial/genética , Genes Mitocondriais/genética , Variação Genética/genética , Metabolismo/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adipócitos/metabolismo , Índice de Massa Corporal , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Estudos de Coortes , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/metabolismo , Locos de Características Quantitativas , Relação Cintura-Quadril
6.
Mol Psychiatry ; 26(2): 483-491, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30842574

RESUMO

Autosomal variants have successfully been associated with trait neuroticism in genome-wide analysis of adequately powered samples. But such studies have so far excluded the X chromosome from analysis. Here, we report genetic association analyses of X chromosome and XY pseudoautosomal single nucleotide polymorphisms (SNPs) and trait neuroticism using UK Biobank samples (N = 405,274). Significant association was found with neuroticism on the X chromosome for 204 markers found within three independent loci (a further 783 were suggestive). Most of the lead neuroticism-related X chromosome variants were located in intergenic regions (n = 397). Involvement of HS6ST2, which has been previously associated with sociability behaviour in the dog, was supported by single SNP and gene-based tests. We found that the amino acid and nucleotide sequences are highly conserved between dogs and humans. From the suggestive X chromosome variants, there were 19 nearby genes which could be linked to gene ontology information. Molecular function was primarily related to binding and catalytic activity; notable biological processes were cellular and metabolic, and nucleic acid binding and transcription factor protein classes were most commonly involved. X-variant heritability of neuroticism was estimated at 0.22% (SE = 0.05) from a full dosage compensation model. A polygenic X-variant score created in an independent sample (maximum N ≈ 7,300) did not predict significant variance in neuroticism, psychological distress, or depressive disorder. We conclude that the X chromosome harbours significant variants influencing neuroticism, and might prove important for other quantitative traits and complex disorders.


Assuntos
Cães/genética , Herança Multifatorial , Neuroticismo , Polimorfismo de Nucleotídeo Único , Cromossomo X/genética , Animais , Estudos de Associação Genética , Fenótipo
7.
Mol Psychiatry ; 26(6): 2663-2676, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33414497

RESUMO

Genomic copy number variants (CNVs) are routinely identified and reported back to patients with neuropsychiatric disorders, but their quantitative effects on essential traits such as cognitive ability are poorly documented. We have recently shown that the effect size of deletions on cognitive ability can be statistically predicted using measures of intolerance to haploinsufficiency. However, the effect sizes of duplications remain unknown. It is also unknown if the effect of multigenic CNVs are driven by a few genes intolerant to haploinsufficiency or distributed across tolerant genes as well. Here, we identified all CNVs > 50 kilobases in 24,092 individuals from unselected and autism cohorts with assessments of general intelligence. Statistical models used measures of intolerance to haploinsufficiency of genes included in CNVs to predict their effect size on intelligence. Intolerant genes decrease general intelligence by 0.8 and 2.6 points of intelligence quotient when duplicated or deleted, respectively. Effect sizes showed no heterogeneity across cohorts. Validation analyses demonstrated that models could predict CNV effect sizes with 78% accuracy. Data on the inheritance of 27,766 CNVs showed that deletions and duplications with the same effect size on intelligence occur de novo at the same frequency. We estimated that around 10,000 intolerant and tolerant genes negatively affect intelligence when deleted, and less than 2% have large effect sizes. Genes encompassed in CNVs were not enriched in any GOterms but gene regulation and brain expression were GOterms overrepresented in the intolerant subgroup. Such pervasive effects on cognition may be related to emergent properties of the genome not restricted to a limited number of biological pathways.


Assuntos
Variações do Número de Cópias de DNA , Genoma , Cognição , Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Humanos , Testes de Inteligência
8.
Indoor Air ; 32(10): e13130, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305064

RESUMO

It is critical to thoroughly investigate, characterize, and understand the unique emission profiles of common and novel polymer feedstocks used in fused filament fabrication (FFF) 3D printers as these products become increasingly ubiquitous in consumer and industrial environments. This work contributes unique insights regarding the effects of polymer composite feedstocks with metal, ceramic, or carbonaceous particle additives on particulate emissions in a variety of filaments under various print conditions, including print temperature. In addition to active characterization of particulate size and concentration following the ANSI/CAN/UL 2904 method, particulate sampling and subsequent analysis by scanning electron microscopy revealed agglomeration behavior that may have important health implications. Specifically, fine particles (0.3-2.5 µm) generated by certain filaments including acrylonitrile butadiene styrene (ABS) and glycol-modified poly(ethylene terephthalate) (PETG) are shown to be formed via agglomeration of emitted ultrafine particles rather than composed of coherent primary particles; accordingly, transport and behavior of these particulates after inhalation may not follow expected patterns for micrometer-sized particles. Structures resembling carbonaceous additives (e.g., graphene and nanotubes) were also captured by airborne sampling during printing of filaments containing carbonaceous advanced materials.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Polímeros , Impressão Tridimensional , Material Particulado/análise
9.
Mol Psychiatry ; 25(11): 3034-3052, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30867560

RESUMO

Higher scores on the personality trait of neuroticism, the tendency to experience negative emotions, are associated with worse mental and physical health. Studies examining links between neuroticism and health typically operationalize neuroticism by summing the items from a neuroticism scale. However, neuroticism is made up of multiple heterogeneous facets, each contributing to the effect of neuroticism as a whole. A recent study showed that a 12-item neuroticism scale described one broad trait of general neuroticism and two special factors, one characterizing the extent to which people worry and feel vulnerable, and the other characterizing the extent to which people are anxious and tense. This study also found that, although individuals who were higher on general neuroticism lived shorter lives, individuals whose neuroticism was characterized by worry and vulnerability lived longer lives. Here, we examine the genetic contributions to the two special factors of neuroticism-anxiety/tension and worry/vulnerability-and how they contrast with that of general neuroticism. First, we show that, whereas the polygenic load for neuroticism is associated with the genetic risk of coronary artery disease, lower intelligence, lower socioeconomic status (SES), and poorer self-rated health, the genetic variants associated with high levels of anxiety/tension, and high levels of worry/vulnerability are associated with genetic variants linked to higher SES, higher intelligence, better self-rated health, and longer life. Second, we identify genetic variants that are uniquely associated with these protective aspects of neuroticism. Finally, we show that different neurological pathways are linked to each of these neuroticism phenotypes.


Assuntos
Status Econômico , Saúde , Inteligência/genética , Longevidade/genética , Neuroticismo , Adulto , Idoso , Ansiedade/genética , Emoções , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
10.
Mol Psychiatry ; 25(10): 2584-2598, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-30760887

RESUMO

Polygenic scores can be used to distil the knowledge gained in genome-wide association studies for prediction of health, lifestyle, and psychological factors in independent samples. In this preregistered study, we used fourteen polygenic scores to predict variation in cognitive ability level at age 70, and cognitive change from age 70 to age 79, in the longitudinal Lothian Birth Cohort 1936 study. The polygenic scores were created for phenotypes that have been suggested as risk or protective factors for cognitive ageing. Cognitive abilities within older age were indexed using a latent general factor estimated from thirteen varied cognitive tests taken at four waves, each three years apart (initial n = 1091 age 70; final n = 550 age 79). The general factor indexed over two-thirds of the variance in longitudinal cognitive change. We ran additional analyses using an age-11 intelligence test to index cognitive change from age 11 to age 70. Several polygenic scores were associated with the level of cognitive ability at age-70 baseline (range of standardized ß-values = -0.178 to 0.302), and the polygenic score for education was associated with cognitive change from childhood to age 70 (standardized ß = 0.100). No polygenic scores were statistically significantly associated with variation in cognitive change between ages 70 and 79, and effect sizes were small. However, APOE e4 status made a significant prediction of the rate of cognitive decline from age 70 to 79 (standardized ß = -0.319 for carriers vs. non-carriers). The results suggest that the predictive validity for cognitive ageing of polygenic scores derived from genome-wide association study summary statistics is not yet on a par with APOE e4, a better-established predictor.


Assuntos
Cognição , Envelhecimento Cognitivo , Estudo de Associação Genômica Ampla , Herança Multifatorial/genética , Idoso , Feminino , Humanos , Testes de Inteligência , Masculino , Testes Neuropsicológicos , Escócia
11.
Eur J Epidemiol ; 36(11): 1143-1155, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34091768

RESUMO

Common carotid intima-media thickness (cIMT) is an index of subclinical atherosclerosis that is associated with ischemic stroke and coronary artery disease (CAD). We undertook a cross-sectional epigenome-wide association study (EWAS) of measures of cIMT in 6400 individuals. Mendelian randomization analysis was applied to investigate the potential causal role of DNA methylation in the link between atherosclerotic cardiovascular risk factors and cIMT or clinical cardiovascular disease. The CpG site cg05575921 was associated with cIMT (beta = -0.0264, p value = 3.5 × 10-8) in the discovery panel and was replicated in replication panel (beta = -0.07, p value = 0.005). This CpG is located at chr5:81649347 in the intron 3 of the aryl hydrocarbon receptor repressor gene (AHRR). Our results indicate that DNA methylation at cg05575921 might be in the pathway between smoking, cIMT and stroke. Moreover, in a region-based analysis, 34 differentially methylated regions (DMRs) were identified of which a DMR upstream of ALOX12 showed the strongest association with cIMT (p value = 1.4 × 10-13). In conclusion, our study suggests that DNA methylation may play a role in the link between cardiovascular risk factors, cIMT and clinical cardiovascular disease.


Assuntos
Espessura Intima-Media Carotídea , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Estudos Transversais , Epigenoma , Humanos , Fatores de Risco
12.
J Toxicol Environ Health A ; 84(11): 458-474, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33641630

RESUMO

Fused filament fabrication (FFF) 3D printers are increasingly used in industrial, academic, military, and residential sectors, yet their emissions and associated user exposure scenarios are not fully described. Characterization of potential user exposure and environmental releases requires robust investigation. During operation, common FFF 3D printers emit varying amounts of ultrafine particles (UFPs) depending upon feedstock material and operation procedures. Volatile organic compounds associated with these emissions exhibit distinct odors; however, the UFP portion is largely imperceptible by humans. This investigation presents straightforward computational modeling as well as experimental validation to provide actionable insights for the proactive design of lower exposure spaces where 3D printers may be used. Specifically, data suggest that forced clean airflows may create lower exposure spaces, and that computational modeling might be employed to predict these spaces with reasonable accuracy to assist with room design. The configuration and positioning of room air ventilation diffusers may be a key factor in identifying lower exposure spaces. A workflow of measuring emissions during a printing process in an ANSI/CAN/UL 2904 environmental chamber was used to provide data for computational fluid dynamics (CFD) modeling of a 6 m2 room. Measurements of the particle concentrations in a Class 1000 clean room of identical geometry were found to pass the Hanna test for agreement between model and experimental data, validating the findings.


Assuntos
Poluentes Atmosféricos/análise , Química Computacional , Exposição Ambiental/análise , Hidrodinâmica , Material Particulado/análise , Biologia Computacional , Humanos , Modelos Teóricos , Impressão Tridimensional
13.
Nano Lett ; 20(10): 7642-7647, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986441

RESUMO

Shortages in the availability of personal protective face masks during the COVID-19 pandemic required many to fabricate masks and filter inserts from available materials. While the base filtration efficiency of a material is of primary importance when a perfect seal is possible, ideal fit is not likely to be achieved by the average person preparing to enter a public space or even a healthcare worker without fit-testing before each shift. Our findings suggest that parameters including permeability and pliability can play a strong role in the filtration efficiency of a mask fabricated with various filter media, and that the filtration efficiency of loosely fitting masks/respirators against ultrafine particulates can drop by more than 60% when worn compared to the ideal filtration efficiency of the base material. Further, a test method using SARS-CoV-2 virion-sized silica nanoaerosols is demonstrated to assess the filtration efficiency against nanoparticulates that follow air currents associated with mask leakage.


Assuntos
Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Filtração/instrumentação , Máscaras , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Dispositivos de Proteção Respiratória , Têxteis , Aerossóis , Microbiologia do Ar , Betacoronavirus/ultraestrutura , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Fibra de Algodão , Filtração/estatística & dados numéricos , Humanos , Exposição por Inalação , Nanopartículas , Tamanho da Partícula , Permeabilidade , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Dióxido de Silício
14.
Blood ; 132(17): 1842-1850, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30042098

RESUMO

Many hemostatic factors are associated with age and age-related diseases; however, much remains unknown about the biological mechanisms linking aging and hemostatic factors. DNA methylation is a novel means by which to assess epigenetic aging, which is a measure of age and the aging processes as determined by altered epigenetic states. We used a meta-analysis approach to examine the association between measures of epigenetic aging and hemostatic factors, as well as a clotting time measure. For fibrinogen, we performed European and African ancestry-specific meta-analyses which were then combined via a random effects meta-analysis. For all other measures we could not estimate ancestry-specific effects and used a single fixed effects meta-analysis. We found that 1-year higher extrinsic epigenetic age as compared with chronological age was associated with higher fibrinogen (0.004 g/L/y; 95% confidence interval, 0.001-0.007; P = .01) and plasminogen activator inhibitor 1 (PAI-1; 0.13 U/mL/y; 95% confidence interval, 0.07-0.20; P = 6.6 × 10-5) concentrations, as well as lower activated partial thromboplastin time, a measure of clotting time. We replicated PAI-1 associations using an independent cohort. To further elucidate potential functional mechanisms, we associated epigenetic aging with expression levels of the PAI-1 protein encoding gene (SERPINE1) and the 3 fibrinogen subunit-encoding genes (FGA, FGG, and FGB) in both peripheral blood and aorta intima-media samples. We observed associations between accelerated epigenetic aging and transcription of FGG in both tissues. Collectively, our results indicate that accelerated epigenetic aging is associated with a procoagulation hemostatic profile, and that epigenetic aging may regulate hemostasis in part via gene transcription.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Metilação de DNA , Hemostasia/fisiologia , Epigênese Genética/fisiologia , Humanos
15.
Psychol Med ; 50(15): 2526-2535, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31576797

RESUMO

BACKGROUND: Major depressive disorder and neuroticism (Neu) share a large genetic basis. We sought to determine whether this shared basis could be decomposed to identify genetic factors that are specific to depression. METHODS: We analysed summary statistics from genome-wide association studies (GWAS) of depression (from the Psychiatric Genomics Consortium, 23andMe and UK Biobank) and compared them with GWAS of Neu (from UK Biobank). First, we used a pairwise GWAS analysis to classify variants as associated with only depression, with only Neu or with both. Second, we estimated partial genetic correlations to test whether the depression's genetic link with other phenotypes was explained by shared overlap with Neu. RESULTS: We found evidence that most genomic regions (25/37) associated with depression are likely to be shared with Neu. The overlapping common genetic variance of depression and Neu was genetically correlated primarily with psychiatric disorders. We found that the genetic contributions to depression, that were not shared with Neu, were positively correlated with metabolic phenotypes and cardiovascular disease, and negatively correlated with the personality trait conscientiousness. After removing shared genetic overlap with Neu, depression still had a specific association with schizophrenia, bipolar disorder, coronary artery disease and age of first birth. Independent of depression, Neu had specific genetic correlates in ulcerative colitis, pubertal growth, anorexia and education. CONCLUSION: Our findings demonstrate that, while genetic risk factors for depression are largely shared with Neu, there are also non-Neu-related features of depression that may be useful for further patient or phenotypic stratification.


Assuntos
Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Neuroticismo , Humanos , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único , Reino Unido
17.
Mol Psychiatry ; 24(2): 169-181, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29326435

RESUMO

Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (rg = 0.70). We used these findings as foundations for our use of a novel approach-multi-trait analysis of genome-wide association studies (MTAG; Turley et al. 2017)-to combine two large genome-wide association studies (GWASs) of education and intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis and myelination-as well as genes expressed in the synapse, and those involved in the regulation of the nervous system-may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of these genetically-related phenotypes.


Assuntos
Inteligência/genética , Neurogênese/genética , Cognição/fisiologia , Análise de Dados , Feminino , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Herança Multifatorial/genética , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Neurogênese/fisiologia , Polimorfismo de Nucleotídeo Único/genética
18.
PLoS Genet ; 13(2): e1006594, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28196072

RESUMO

Male pattern baldness can have substantial psychosocial effects, and it has been phenotypically linked to adverse health outcomes such as prostate cancer and cardiovascular disease. We explored the genetic architecture of the trait using data from over 52,000 male participants of UK Biobank, aged 40-69 years. We identified over 250 independent genetic loci associated with severe hair loss (P<5x10-8). By splitting the cohort into a discovery sample of 40,000 and target sample of 12,000, we developed a prediction algorithm based entirely on common genetic variants that discriminated (AUC = 0.78, sensitivity = 0.74, specificity = 0.69, PPV = 59%, NPV = 82%) those with no hair loss from those with severe hair loss. The results of this study might help identify those at greatest risk of hair loss, and also potential genetic targets for intervention.


Assuntos
Alopecia/genética , Doenças Cardiovasculares/epidemiologia , Neoplasias da Próstata/epidemiologia , Adulto , Idoso , Alopecia/epidemiologia , Doenças Cardiovasculares/complicações , Doenças Cardiovasculares/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Neoplasias da Próstata/complicações , Neoplasias da Próstata/genética , Fatores de Risco
19.
Am J Hum Genet ; 99(1): 40-55, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346686

RESUMO

Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets' important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors.


Assuntos
Plaquetas/metabolismo , Exoma/genética , Variação Genética/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Volume Plaquetário Médio , Contagem de Plaquetas
20.
Am J Hum Genet ; 99(1): 8-21, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346685

RESUMO

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10(-10) for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10(-8) for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10(-11)) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10(-9)). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10(-7)). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated.


Assuntos
Eritrócitos/citologia , Eritropoese/genética , Exoma/genética , Pleiotropia Genética , Variação Genética/genética , Genótipo , Negro ou Afro-Americano/genética , Desequilíbrio Alélico , Índices de Eritrócitos , Eritrócitos/metabolismo , Frequência do Gene , Hematócrito , Hemoglobinas/genética , Humanos , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA