Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
BMC Med Genet ; 19(1): 175, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30241514

RESUMO

BACKGROUND: We recently identified a role for the muscle-specific ubiquitin ligase MuRF1 in right-sided heart failure secondary to pulmonary hypertension induced by chronic hypoxia (CH). MuRF1-/- mice exposed to CH are resistant to right ventricular (RV) dysfunction whereas MuRF1 Tg + mice exhibit impaired function indicative of heart failure. The present study was undertaken to understand the underlying transcriptional alterations in the RV of MuRF1-/- and MuRF1 Tg + mice. METHODS: Microarray analysis was performed on RNA isolated from the RV of MuRF1-/-, MuRF1 Tg+, and wild-type control mice exposed to CH. RESULTS: MuRF1-/- RV differentially expressed 590 genes in response to CH. Analysis of the top 66 genes (> 2-fold or < - 2-fold) revealed significant associations with oxidoreductase, transcription regulation, and transmembrane component annotations. The significant genes had promoters enriched for HOXD12, HOXC13, and RREB-1 protein transcription factor binding sites. MuRF1 Tg + RV differentially expressed 150 genes in response to CH. Analysis of the top 45 genes (> 3-fold or < - 3-fold) revealed significant associations with oxidoreductase-metabolic, glycoprotein-transmembrane-integral proteins, and alternative splicing/splice variant annotations. The significant genes were enriched for promoters with ZIC1 protein transcription factor binding sites. CONCLUSIONS: The differentially expressed genes in MuRF1-/- and MuRF1 Tg + RV after CH have common functional annotations related to oxidoreductase (including antioxidant) and transmembrane component functions. Moreover, the functionally-enhanced MuRF1-/- hearts regulate genes related to transcription, homeobox proteins, and kinases/phosphorylation. These studies also reveal potential indirect effects of MuRF1 through regulating Rreb-1, and they reveal mechanisms by which MuRF1 may transcriptionally regulate anti-oxidant systems in the face of right heart failure.


Assuntos
Insuficiência Cardíaca/genética , Hipóxia/genética , Proteínas Musculares/genética , Transcrição Gênica , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Disfunção Ventricular Direita/genética , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Camundongos , Camundongos Knockout , Análise em Microsséries , Anotação de Sequência Molecular , Proteínas Musculares/deficiência , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido/deficiência , Ubiquitina-Proteína Ligases/deficiência , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
2.
Metabolomics ; 11(5): 1287-1301, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26392817

RESUMO

Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between Brg1/Brm double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA