Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Mater ; 18(2): 175-185, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643235

RESUMO

Fully effective vaccines for complex infections must elicit a diverse repertoire of antibodies (humoral immunity) and CD8+ T-cell responses (cellular immunity). Here, we present a synthetic glyco-adjuvant named p(Man-TLR7), which, when conjugated to antigens, elicits robust humoral and cellular immunity. p(Man-TLR7) is a random copolymer composed of monomers that either target dendritic cells (DCs) via mannose-binding receptors or activate DCs via Toll-like receptor 7 (TLR7). Protein antigens are conjugated to p(Man-TLR7) via a self-immolative linkage that releases chemically unmodified antigen after endocytosis, thus amplifying antigen presentation to T cells. Studies with ovalbumin (OVA)-p(Man-TLR7) conjugates demonstrate that OVA-p(Man-TLR7) generates greater humoral and cellular immunity than OVA conjugated to polymers lacking either mannose targeting or TLR7 ligand. We show significant enhancement of Plasmodium falciparum-derived circumsporozoite protein (CSP)-specific T-cell responses, expansion in the breadth of the αCSP IgG response and increased inhibition of sporozoite invasion into hepatocytes with CSP-p(Man-TLR7) when compared with CSP formulated with MPLA/QS-21-loaded liposomes-the adjuvant used in the most clinically advanced malaria vaccine. We conclude that our antigen-p(Man-TLR7) platform offers a strategy to enhance the immunogenicity of protein subunit vaccines.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Protozoários/química , Glicoconjugados/química , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Polímeros/química , Adjuvantes Imunológicos/química , Animais , Camundongos , Plasmodium falciparum/imunologia , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia
2.
Environ Sci Technol ; 54(12): 7165-7174, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32364715

RESUMO

Iron electrocoagulation (EC) can be used for the decentralized treatment of arsenic(As)-contaminated groundwater. Iron EC involves the electrolytic dissolution of an Fe(0) electrode to Fe(II). This process produces reactive oxidants, which oxidize As(III) and Fe(II) to As(V) and a range of Fe(III) (oxyhydr)oxide phases. Here, we investigated the impact of manganese (Mn) on As removal, since the two often co-occur in groundwater. In the absence of Mn(II), we observed rapid As(III) oxidation and the formation of As(V)-Fe(III) polymers. Arsenic removal was achieved upon aggregation of the As(V)-Fe(III) polymers. In the presence of Mn, the mechanism of As removal varied with pH. At pH 4.5, As(III) was oxidized rapidly by OH• and the aggregation of the resulting As(V)-Fe(III) polymers was enhanced by the presence of Mn. At pH 8.5, As(III) and Mn(II) competed for Fe(IV), which led As(III) to persist in solution. The As(V) that did form was incorporated into a mixture of As(V)-Fe(III) polymers and a ferrihydrite-like phase that incorporated 8% Mn(III); some As(III) was also sorbed by these phases. At intermediate pH values, As(III) and Mn(II) also competed for the oxidants, but Mn(III) behaved as a reactive intermediate that reacted with Fe(II) or As(III). This result can explain the presence of As(V) in the solid phase. This detailed understanding of the As removal mechanisms in the presence of Mn can be used to tune the operating conditions of Fe EC for As removal under typical groundwater conditions.


Assuntos
Arsênio , Poluentes Químicos da Água , Eletrocoagulação , Compostos Férricos , Manganês , Oxidantes , Oxirredução
3.
J Allergy Clin Immunol ; 140(5): 1339-1350, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28343701

RESUMO

BACKGROUND: Newborns display distinct immune responses, leaving them vulnerable to infections and impairing immunization. Targeting newborn dendritic cells (DCs), which integrate vaccine signals into adaptive immune responses, might enable development of age-specific vaccine formulations to overcome suboptimal immunization. OBJECTIVE: Small-molecule imidazoquinoline Toll-like receptor (TLR) 8 agonists robustly activate newborn DCs but can result in reactogenicity when delivered in soluble form. We used rational engineering and age- and species-specific modeling to construct and characterize polymer nanocarriers encapsulating a TLR8 agonist, allowing direct intracellular release after selective uptake by DCs. METHODS: Chemically similar but morphologically distinct nanocarriers comprised of amphiphilic block copolymers were engineered for targeted uptake by murine DCs in vivo, and a range of TLR8 agonist-encapsulating polymersome formulations were then synthesized. Novel 96-well in vitro assays using neonatal human monocyte-derived DCs and humanized TLR8 mouse bone marrow-derived DCs enabled benchmarking of the TLR8 agonist-encapsulating polymersome formulations against conventional adjuvants and licensed vaccines, including live attenuated BCG vaccine. Immunogenicity of the TLR8 agonist adjuvanted antigen 85B (Ag85B)/peptide 25-loaded BCG-mimicking nanoparticle formulation was evaluated in vivo by using humanized TLR8 neonatal mice. RESULTS: Although alum-adjuvanted vaccines induced modest costimulatory molecule expression, limited TH-polarizing cytokine production, and significant cell death, BCG induced a robust adult-like maturation profile of neonatal DCs. Remarkably, TLR8 agonist polymersomes induced not only newborn DC maturation profiles similar to those induced by BCG but also stronger IL-12p70 production. On subcutaneous injection to neonatal mice, the TLR8 agonist-adjuvanted Ag85B peptide 25 formulation was comparable with BCG in inducing Ag85B-specific CD4+ T-cell numbers. CONCLUSION: TLR8 agonist-encapsulating polymersomes hold substantial potential for early-life immunization against intracellular pathogens. Overall, our study represents a novel approach for rational design of early-life vaccines.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacina BCG/imunologia , Células Dendríticas/imunologia , Imidazóis/administração & dosagem , Monócitos/imunologia , Nanopartículas/administração & dosagem , Quinolinas/administração & dosagem , Imunidade Adaptativa , Animais , Animais Recém-Nascidos , Biomimética , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Citocinas/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Imunidade Inata , Imunomodulação , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Nanopartículas/química , Polímeros/química , Quinolinas/química , Quinolinas/farmacologia , Receptor 8 Toll-Like/agonistas , Vacinação
4.
J Immunol ; 192(11): 5002-11, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24795456

RESUMO

Until recently, the known roles of lymphatic endothelial cells (LECs) in immune modulation were limited to directing immune cell trafficking and passively transporting peripheral Ags to lymph nodes. Recent studies demonstrated that LECs can directly suppress dendritic cell maturation and present peripheral tissue and tumor Ags for autoreactive T cell deletion. We asked whether LECs play a constitutive role in T cell deletion under homeostatic conditions. In this study, we demonstrate that murine LECs under noninflamed conditions actively scavenge and cross-present foreign exogenous Ags to cognate CD8(+) T cells. This cross-presentation was sensitive to inhibitors of lysosomal acidification and endoplasmic reticulum-golgi transport and was TAP1 dependent. Furthermore, LECs upregulated MHC class I and the PD-1 ligand PD-L1, but not the costimulatory molecules CD40, CD80, or CD86, upon Ag-specific interactions with CD8(+) T cells. Finally, Ag-specific CD8(+) T cells that were activated by LECs underwent proliferation, with early-generation apoptosis and dysfunctionally activated phenotypes that could not be reversed by exogenous IL-2. These findings help to establish LECs as APCs that are capable of scavenging and cross-presenting exogenous Ags, in turn causing dysfunctional activation of CD8(+) T cells under homeostatic conditions. Thus, we suggest that steady-state lymphatic drainage may contribute to peripheral tolerance by delivering self-Ags to lymph node-resident leukocytes, as well as by providing constant exposure of draining peripheral Ags to LECs, which maintain tolerogenic cross-presentation of such Ags.


Assuntos
Apresentação de Antígeno/fisiologia , Células Apresentadoras de Antígenos/imunologia , Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Endoteliais/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Animais , Células Apresentadoras de Antígenos/citologia , Antígenos/genética , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Transformada , Reações Cruzadas/imunologia , Células Endoteliais/citologia , Antígenos de Histocompatibilidade Classe I/genética , Interleucina-2/genética , Interleucina-2/imunologia , Camundongos , Camundongos Knockout
5.
Nat Commun ; 11(1): 538, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988323

RESUMO

Lymphatic endothelial cells (LECs) chemoattract naïve T cells and promote their survival in the lymph nodes, and can cross-present antigens to naïve CD8+ T cells to drive their proliferation despite lacking key costimulatory molecules. However, the functional consequence of LEC priming of CD8+ T cells is unknown. Here, we show that while many proliferating LEC-educated T cells enter early apoptosis, the remainders comprise a long-lived memory subset, with transcriptional, metabolic, and phenotypic features of central memory and stem cell-like memory T cells. In vivo, these memory cells preferentially home to lymph nodes and display rapid proliferation and effector differentiation following memory recall, and can protect mice against a subsequent bacterial infection. These findings introduce a new immunomodulatory role for LECs in directly generating a memory-like subset of quiescent yet antigen-experienced CD8+ T cells that are long-lived and can rapidly differentiate into effector cells upon inflammatory antigenic challenge.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Endoteliais/fisiologia , Animais , Proliferação de Células , Células Endoteliais/imunologia , Perfilação da Expressão Gênica , Memória Imunológica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Sci Rep ; 10(1): 1055, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974398

RESUMO

Controlled infection with intestinal nematodes has therapeutic potential for preventing the symptoms of allergic and autoimmune diseases. Here, we engineered larvae of the filarial nematode Litomosoides sigmodontis as a vaccine strategy to induce adaptive immunity against a foreign, crosslinked protein, chicken egg ovalbumin (OVA), in the absence of an external adjuvant. The acylation of filarial proteins with fluorescent probes or biotin was not immediately detrimental to larval movement and survival, which died 3 to 5 days later. At least some of the labeled and skin-inoculated filariae migrated through lymphatic vessels to draining lymph nodes. The immunization potential of OVA-biotin-filariae was compared to that of an OVA-bound nanoparticulate carrier co-delivered with a CpG adjuvant in a typical vaccination scheme. Production of IFNγ and TNFα by restimulated CD4+ cells but not CD8+ confirmed the specific ability of filariae to stimulate CD4+ T cells. This alternative method of immunization exploits the intrinsic adjuvancy of the attenuated nematode carrier and has the potential to shift the vaccination immune response towards cellular immunity.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Hipersensibilidade a Ovo/imunologia , Filarioidea/imunologia , Larva/imunologia , Ovalbumina/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/imunologia , Galinhas , Hipersensibilidade a Ovo/etiologia , Filarioidea/genética , Proteínas de Helminto/administração & dosagem , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Humanos , Imunização , Larva/genética , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/efeitos adversos , Ovalbumina/química
7.
Nat Biomed Eng ; 3(10): 817-829, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358881

RESUMO

Homeostatic antigen presentation by hepatic antigen-presenting cells, which results in tolerogenic T-cell education, could be exploited to induce antigen-specific immunological tolerance. Here we show that antigens modified with polymeric forms of either N-acetylgalactosamine or N-acetylglucosamine target hepatic antigen-presenting cells, increase their antigen presentation and induce antigen-specific tolerance, as indicated by CD4+ and CD8+ T-cell deletion and anergy. These synthetically glycosylated antigens also expanded functional regulatory T cells, which are necessary for the durable suppression of antigen-specific immune responses. In an adoptive-transfer mouse model of type-1 diabetes, treatment with the glycosylated autoantigens prevented T-cell-mediated diabetes, expanded antigen-specific regulatory T cells and resulted in lasting tolerance to a subsequent challenge with activated diabetogenic T cells. Glycosylated autoantigens targeted to hepatic antigen-presenting cells might enable therapies that promote immune tolerance in patients with autoimmune diseases.


Assuntos
Acetilgalactosamina/imunologia , Acetilgalactosamina/farmacologia , Acetilglucosamina/imunologia , Acetilglucosamina/farmacologia , Apresentação de Antígeno/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/imunologia , Tolerância Imunológica/efeitos dos fármacos , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Autoantígenos/farmacologia , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Feminino , Fígado/efeitos dos fármacos , Fígado/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Baço , Linfócitos T/efeitos dos fármacos
8.
Virology ; 512: 161-171, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28963882

RESUMO

Lassa virus (LASV) causes severe hemorrhagic fever with high mortality, yet no vaccine currently exists. Antibodies targeting viral attachment proteins are crucial for protection against many viral infections. However, the envelope glycoprotein (GP)-1 of LASV elicits weak antibody responses due to extensive glycan shielding. Here, we explored a novel vaccine strategy to enhance humoral immunity against LASV GP1. Using structural information, we designed a recombinant GP1 immunogen, and then encapsulated it into oxidation-sensitive polymersomes (PS) as nanocarriers that promote intracellular MHCII loading. Mice immunized with adjuvanted PS (LASV GP1) showed superior humoral responses than free LASV GP1, including antibodies with higher binding affinity to virion GP1, increased levels of polyfunctional anti-viral CD4 T cells, and IgG-secreting B cells. PS (LASV GP1) elicited a more diverse epitope repertoire of anti-viral IgG. Together, these data demonstrate the potential of our nanocarrier vaccine platform for generating virus-specific antibodies against weakly immunogenic viral antigens.


Assuntos
Glicoproteínas/metabolismo , Febre Lassa/prevenção & controle , Vírus Lassa/fisiologia , Nanoestruturas/química , Proteínas do Envelope Viral/metabolismo , Vacinas Virais/imunologia , Células A549 , Animais , Feminino , Regulação Viral da Expressão Gênica/imunologia , Glicoproteínas/genética , Células HEK293 , Humanos , Imunidade Humoral , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Envelope Viral/genética
9.
Biomaterials ; 132: 48-58, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28407494

RESUMO

Nanoparticle delivery systems are known to enhance the immune response to soluble antigens (Ags) and are thus a promising tool for the development of new vaccines. Our laboratory has engineered two different nanoparticulate systems in which Ag is either encapsulated within the core of polymersomes (PSs) or decorated onto the surface of nanoparticles (NPs). Previous studies showed that PSs are better at enhancing CD4 T cells and antibody titers, while NPs preferentially augment cytotoxic CD8 T cells. Herein, we demonstrate that the differential activation of T cell immunity reflects differences in the modes of intracellular trafficking and distinct biodistribution of the Ag in lymphoid organs, which are both driven by the properties of each nanocarrier. Furthermore, we found that Ags within PSs promoted better CD4 T cell activation and induced a higher frequency of CD4 T follicular helper (Tfh) cells. These differences correlated with changes in the frequency of germinal center B cells and plasma cell formation, which reflects the previously observed antibody titers. Our results show that PSs are a promising vector for the delivery of Ags for B cell vaccine development. This study demonstrates that nanocarrier design has a large impact on the quality of the induced adaptive immune response.


Assuntos
Antígenos/administração & dosagem , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Nanocápsulas/química , Vacinas/administração & dosagem , Animais , Antígenos/imunologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Embrião de Galinha , Citoplasma/metabolismo , Células Dendríticas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Centro Germinativo/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Nanocompostos/química , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Polímeros/química , Prata/química , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Distribuição Tecidual , Vacinas/química
10.
Diabetes ; 66(2): 460-473, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27872147

RESUMO

The target autoantigens in several organ-specific autoimmune diseases, including type 1 diabetes (T1D), are intracellular membrane proteins, whose initial encounter with the immune system is poorly understood. Here we propose a new model for how these proteins can initiate autoimmunity. We found that rat and human pancreatic islets release the intracellular ß-cell autoantigens in human T1D, GAD65, IA-2, and proinsulin in exosomes, which are taken up by and activate dendritic cells. Accordingly, the anchoring of GAD65 to exosome-mimetic liposomes strongly boosted antigen presentation and T-cell activation in the context of the human T1D susceptibility haplotype HLA-DR4. Cytokine-induced endoplasmic reticulum stress enhanced exosome secretion by ß-cells; induced exosomal release of the immunostimulatory chaperones calreticulin, Gp96, and ORP150; and increased exosomal stimulation of antigen-presenting cells. We propose that stress-induced exosomal release of intracellular autoantigens and immunostimulatory chaperones may play a role in the initiation of autoimmune responses in T1D.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Exossomos/metabolismo , Glutamato Descarboxilase/imunologia , Células Secretoras de Insulina/metabolismo , Proinsulina/imunologia , Proteínas Tirosina Fosfatases Classe 8 Semelhantes a Receptores/imunologia , Animais , Calreticulina/imunologia , Linhagem Celular , Células Cultivadas , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/imunologia , Estresse do Retículo Endoplasmático/imunologia , Ensaio de Imunoadsorção Enzimática , Exossomos/imunologia , Exossomos/ultraestrutura , Imunofluorescência , Predisposição Genética para Doença , Antígeno HLA-DR4/genética , Proteínas de Choque Térmico HSP70/imunologia , Haplótipos , Humanos , Ilhotas Pancreáticas/metabolismo , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos NOD , Microscopia Eletrônica de Transmissão , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
11.
J Invest Dermatol ; 136(6): 1172-1181, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26896775

RESUMO

Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos/métodos , HIV-1/imunologia , Imunidade Celular/efeitos dos fármacos , Vacinas/administração & dosagem , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Infecções por HIV/prevenção & controle , HIV-1/efeitos dos fármacos , Humanos , Nanopartículas/administração & dosagem , Polipropilenos/farmacologia , Sulfetos/farmacologia
12.
Front Immunol ; 6: 446, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441957

RESUMO

Antigen presentation is no longer the exclusive domain of cells of hematopoietic origin. Recent works have demonstrated that lymph node stromal cell (LNSC) populations, such as fibroblastic reticular cells, lymphatic and blood endothelial cells, not only provide a scaffold for lymphocyte interactions but also exhibit active immunomodulatory roles that are critical to mounting and resolving effective immune responses. Importantly, LNSCs possess the ability to present antigens and establish antigen-specific interactions with T cells. One example is the expression of peripheral tissue antigens, which are presented on major histocompatibility complex (MHC)-I molecules with tolerogenic consequences on T cells. Additionally, exogenous antigens, including self and tumor antigens, can be processed and presented on MHC-I complexes, which result in dysfunctional activation of antigen-specific CD8(+) T cells. While MHC-I is widely expressed on cells of both hematopoietic and non-hematopoietic origins, antigen presentation via MHC-II is more precisely regulated. Nevertheless, LNSCs are capable of endogenously expressing, or alternatively, acquiring MHC-II molecules. Transfer of antigen between LNSC and dendritic cells in both directions has been recently suggested to promote tolerogenic roles of LNSCs on the CD4(+) T cell compartment. Thus, antigen presentation by LNSCs is thought to be a mechanism that promotes the maintenance of peripheral tolerance as well as generates a pool of diverse antigen-experienced T cells for protective immunity. This review aims to integrate the current and emerging literature to highlight the importance of LNSCs in immune responses, and emphasize their role in antigen trafficking, retention, and presentation.

13.
PLoS One ; 8(4): e61646, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23626707

RESUMO

Nanoparticles have been extensively developed for therapeutic and diagnostic applications. While the focus of nanoparticle trafficking in vivo has traditionally been on drug delivery and organ-level biodistribution and clearance, recent work in cancer biology and infectious disease suggests that targeting different cells within a given organ can substantially affect the quality of the immunological response. Here, we examine the cell-level biodistribution kinetics after administering ultrasmall Pluronic-stabilized poly(propylene sulfide) nanoparticles in the mouse. These nanoparticles depend on lymphatic drainage to reach the lymph nodes and blood, and then enter the spleen rather than the liver, where they interact with monocytes, macrophages and myeloid dendritic cells. They were more readily taken up into lymphatics after intradermal (i.d.) compared to intramuscular administration, leading to ∼50% increased bioavailability in blood. When administered i.d., their distribution favored antigen-presenting cells, with especially strong targeting to myeloid cells. In tumor-bearing mice, the monocytic and the polymorphonuclear myeloid-derived suppressor cell compartments were efficiently and preferentially targeted, rendering this nanoparticulate formulation potentially useful for reversing the highly suppressive activity of these cells in the tumor stroma.


Assuntos
Células Dendríticas/metabolismo , Corantes Fluorescentes/farmacocinética , Células Mieloides/metabolismo , Nanopartículas/administração & dosagem , Animais , Antígenos CD , Disponibilidade Biológica , Células Dendríticas/patologia , Feminino , Injeções Intradérmicas , Injeções Intramusculares , Linfonodos/metabolismo , Linfonodos/patologia , Linfoma/sangue , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/patologia , Células Mieloides/patologia , Nanopartículas/química , Transplante de Neoplasias , Poloxâmero/química , Polímeros/química , Baço/metabolismo , Baço/patologia , Sulfetos/química
14.
Sci Transl Med ; 4(148): 148rv9, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22914624

RESUMO

As the science of immunology grows increasingly mechanistic, motivation for developing quantitative, design-based engineering approaches has also evolved, both for therapeutic interventions and for elucidating immunological pathways in human disease. This has seeded the nascent field of "immunoengineering," which seeks to apply engineering analyses and design approaches to problems in translational immunology. For example, cell engineers are creating ways to tailor and use immune cells as living therapeutics; protein engineers are devising new methods of rapid antibody discovery; biomaterials scientists are guiding vaccine delivery and immune-cell activation with novel constructs; and systems immunologists are deciphering the evolution and maintenance of T and B cell receptor repertoires, which could help guide vaccine design. The field is multidisciplinary and collaborative, with engineers and immunologists working together to better understand and treat disease. We discuss the scientific progress in this young, yet rapidly evolving research area, which has yielded numerous start-up companies that are betting on impact in clinical and commercial translation in the near future.


Assuntos
Bioengenharia/métodos , Imunoterapia/métodos , Animais , Humanos , Tolerância Imunológica/imunologia , Nanoestruturas , Alicerces Teciduais/química , Vacinas/imunologia
15.
Acta Biomater ; 8(9): 3210-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22698945

RESUMO

Poly(ethylene glycol)-stabilized poly(propylene sulfide) core (PEG-PPS) nanoparticles (NPs) smaller than 50 nm efficiently travel to draining lymph nodes and interact with antigen-presenting cells (APCs) to induce potent immune responses following intradermal immunization. To determine if a similar system could be developed that could be more easily and reproducibly prepared and eliminated faster in vivo, we created block copolymers of PEG-bl-PPS capable of self-assembling into 25-35 nm micelles (MCs). Biodistribution studies showed that these MCs were able to travel to draining lymph nodes, where they preferentially interacted with APCs. To couple cysteine-containing antigens to the surface of the MCs, a new polymer was synthesized with a terminal pyridyl disulfide (PDS), forming PDS-PEG-bl-PPS-benzyl. When mice were immunized in conjunction with free CpG as an adjuvant, ovalbumin-conjugated MCs (MC-Ova) generated more (2.4-fold) Ova-specific CD8(+) T cells in the blood and higher (1.7-fold) interferon-gamma levels from splenocytes upon restimulation than in mice immunized with free Ova and CpG. When comparing this MC platform to our PEG-PPS NPs with disulfide-linked Ova, no significant differences were found in the measured responses. These results indicate that PDS-functionalized MCs are efficient antigen delivery vehicles that enhance immune responses compared to immunization with free protein.


Assuntos
Antígenos/administração & dosagem , Dissulfetos/química , Vasos Linfáticos/metabolismo , Micelas , Polímeros , Piridinas/química , Animais , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
16.
Cell Rep ; 1(3): 191-9, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22832193

RESUMO

Tumor expression of the lymphangiogenic factor VEGF-C is correlated with metastasis and poor prognosis, and although VEGF-C enhances transport to the draining lymph node (dLN) and antigen exposure to the adaptive immune system, its role in tumor immunity remains unexplored. Here, we demonstrate that VEGF-C promotes immune tolerance in murine melanoma. In B16 F10 melanomas expressing a foreign antigen (OVA), VEGF-C protected tumors against preexisting antitumor immunity and promoted local deletion of OVA-specific CD8(+) T cells. Naive OVA-specific CD8(+) T cells, transferred into tumor-bearing mice, were dysfunctionally activated and apoptotic. Lymphatic endothelial cells (LECs) in dLNs cross-presented OVA, and naive LECs scavenge and cross-present OVA in vitro. Cross-presenting LECs drove the proliferation and apoptosis of OVA-specific CD8(+) T cells ex vivo. Our findings introduce a tumor-promoting role for lymphatics in the tumor and dLN and suggest that lymphatic endothelium in the local microenvironment may be a target for immunomodulation.


Assuntos
Antígenos de Neoplasias/imunologia , Apresentação Cruzada/imunologia , Tolerância Imunológica/imunologia , Linfonodos/imunologia , Melanoma Experimental/imunologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Apresentação de Antígeno/imunologia , Apoptose/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Endoteliais/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Linfonodos/patologia , Linfangiogênese , Melanoma Experimental/patologia , Melanoma Experimental/prevenção & controle , Camundongos , Metástase Neoplásica , Peptídeos/imunologia , Células Estromais/metabolismo
17.
Vaccine ; 28(50): 7897-906, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-20934457

RESUMO

Vaccines aiming to activate cytotoxic T cells require cross-presentation of exogenous antigen by antigen-presenting cells (APCs). We recently developed a synthetic nanoparticle vaccine platform that targets lymph node-resident dendritic cells (DCs), capable of mounting an immune response to conjugated antigen. Here, we explore routes of processing and the efficiency of MHC I cross-presentation of OVA peptides conjugated using both reducible and non-reducible linkages, exploring the hypothesis that reduction-sensitive conjugation will lead to better antigen cross-presentation. Both clathrin and macropinocytic pathways were implicated in nanoparticle uptake by colocalization and inhibitor studies. Cross-presentation by DCs was demonstrated by direct antibody staining and in vitro stimulation of CD8(+) T cells from OT-I mice and was indeed most efficient with the reduction-sensitive conjugation. Similarly, we observed IFN-γ production by CD4(+) T cells from OT-II mice. Finally, immunization with the OVA peptide-bearing nanoparticles resulted in in vivo proliferation and IFN-γ production by adoptively transferred CD8(+) OT-I T cells and was also most efficient with reduction-sensitive linking of the peptide antigen. These results demonstrate the relevance of the poly(propylene sulfide) nanoparticle vaccine platform and antigen conjugation scheme for activating both cytotoxic and helper T cell responses.


Assuntos
Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Sulfetos/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Vesículas Revestidas por Clatrina/imunologia , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas , Ovalbumina/imunologia , Pinocitose/imunologia , Polímeros , Baço/citologia , Baço/imunologia
18.
Virology ; 367(1): 10-8, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17588632

RESUMO

Over the past decade, adeno-associated (AAV) virus has emerged as an important vector for gene therapy. As a result, understanding its basic biology, including intracellular trafficking, has become increasingly important. Here, we describe the effect of inhibiting dynein function or altering the state of microtubule polymerization on rAAV2 transduction. Overexpression of dynamitin, resulting in a functional inhibition of the minus-end-directed microtubule motor protein dynein, did not inhibit transduction. Equally, treatment of cells with nocodazole, or concentrations of vinblastine that result in the disruption of microtubules, had no significant effect on transduction. In contrast, high concentrations of Taxol and vinblastine, resulting in microtubule stabilization and the formation of tubulin paracrystals respectively, reduced rAAV2 transduction in a vector-dose-dependent manner. These results demonstrate that AAV2 can infect HeLa cells independently of dynein function or an intact microtubule network.


Assuntos
Dependovirus/patogenicidade , Dineínas/antagonistas & inibidores , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Transdução Genética , Antineoplásicos/farmacologia , Dependovirus/genética , Dependovirus/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Nocodazol/farmacologia , Paclitaxel/farmacologia , Recombinação Genética , Moduladores de Tubulina/farmacologia , Vimblastina/farmacologia
19.
Biochemistry ; 45(20): 6476-87, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16700558

RESUMO

Lipid membranes compartmentalize eukaryotic cells and separate the cell interior from the extracellular milieu. So far, studies of peptide and protein interactions with membranes have largely been limited to naturally occurring peptides or to sequences designed on the basis of structural information and biophysical parameters. To expand on these studies, utilizing a system with minimal assumptions, we used phage-display technology to identify 12 amino acid-long peptides that bind to liposomes at pH 5.0 but not at pH 7.5. Of the nineteen peptides discovered, three were able to cause leakage of liposome contents. Multivalent presentation of these membrane-active peptides by conjugation onto poly(l-Lysine) enhanced their lytic potential. The secondary structures were analyzed by circular dichroism in aqueous 2,2,2-trifluoroethanol and in buffered aqueous solutions, both in the presence and absence of liposomes. Two of the three lytic peptides show alpha helical profiles, whereas none of the nonlytic peptides formed stable secondary structures. The diverse characteristics of the peptides identified in this study demonstrate that phage-displayed peptide library screens on lipid membranes result in the discovery of nonclassical membrane-active peptides, whose study will provide novel insights into peptide-membrane interactions.


Assuntos
Biblioteca de Peptídeos , Peptídeos/química , Sequência de Aminoácidos , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Lipossomos/química , Lipossomos/metabolismo , Dados de Sequência Molecular , Peptídeos/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA