Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 146(1): 53-66, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729780

RESUMO

Malignant gliomas are aggressive brain tumors with limited therapeutic options, and improvements in treatment require a deeper molecular understanding of this disease. As in other cancers, recent studies have identified highly tumorigenic subpopulations within malignant gliomas, known generally as cancer stem cells. Here, we demonstrate that glioma stem cells (GSCs) produce nitric oxide via elevated nitric oxide synthase-2 (NOS2) expression. GSCs depend on NOS2 activity for growth and tumorigenicity, distinguishing them from non-GSCs and normal neural progenitors. Gene expression profiling identified many NOS2-regulated genes, including the cell-cycle inhibitor cell division autoantigen-1 (CDA1). Further, high NOS2 expression correlates with decreased survival in human glioma patients, and NOS2 inhibition slows glioma growth in a murine intracranial model. These data provide insight into how GSCs are mechanistically distinct from their less tumorigenic counterparts and suggest that NOS2 inhibition may be an efficacious approach to treating this devastating disease.


Assuntos
Proliferação de Células , Glioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Autoantígenos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Óxido Nítrico/metabolismo , Células Tumorais Cultivadas
2.
Genes Dev ; 28(10): 1085-100, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24788093

RESUMO

Glioblastomas are the most prevalent and lethal primary brain tumor and are comprised of hierarchies with self-renewing cancer stem cells (CSCs) at the apex. Like neural stem cells (NSCs), CSCs reside in functional niches that provide essential cues to maintain the cellular hierarchy. Bone morphogenetic proteins (BMPs) instruct NSCs to adopt an astrocyte fate and are proposed as anti-CSC therapies to induce differentiation, but, paradoxically, tumors express high levels of BMPs. Here we demonstrate that the BMP antagonist Gremlin1 is specifically expressed by CSCs as protection from endogenous BMPs. Gremlin1 colocalizes with CSCs in vitro and in vivo. Furthermore, Gremlin1 blocks prodifferentiation effects of BMPs, and overexpression of Gremlin1 in non-CSCs decreases their endogenous BMP signaling to promote stem-like features. Consequently, Gremlin1-overexpressing cells display increased growth and tumor formation abilities. Targeting Gremlin1 in CSCs results in impaired growth and self-renewal. Transcriptional profiling demonstrated that Gremlin1 effects were associated with inhibition of p21(WAF1/CIP1), a key CSC signaling node. This study establishes CSC-derived Gremlin1 as a driving force in maintaining glioblastoma tumor proliferation and glioblastoma hierarchies through the modulation of endogenous prodifferentiation signals.


Assuntos
Glioma/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Ciclo Celular/genética , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/genética , Glioma/patologia , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
3.
J Cell Sci ; 132(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30910831

RESUMO

Steady-state mitochondrial structure or morphology is primarily maintained by a balance of opposing fission and fusion events between individual mitochondria, which is collectively referred to as mitochondrial dynamics. The details of the bidirectional relationship between the status of mitochondrial dynamics (structure) and energetics (function) require methods to integrate these mitochondrial aspects. To study the quantitative relationship between the status of mitochondrial dynamics (fission, fusion, matrix continuity and diameter) and energetics (ATP and redox), we have developed an analytical approach called mito-SinCe2 After validating and providing proof of principle, we applied mito-SinCe2 on ovarian tumor-initiating cells (ovTICs). Mito-SinCe2 analyses led to the hypothesis that mitochondria-dependent ovTICs interconvert between three states, that have distinct relationships between mitochondrial energetics and dynamics. Interestingly, fusion and ATP increase linearly with each other only once a certain level of fusion is attained. Moreover, mitochondrial dynamics status changes linearly with ATP or with redox, but not simultaneously with both. Furthermore, mito-SinCe2 analyses can potentially predict new quantitative features of the opposing fission versus fusion relationship and classify cells into functional classes based on their mito-SinCe2 states.This article has an associated First Person interview with the first author of the paper.


Assuntos
Mitocôndrias/fisiologia , Dinâmica Mitocondrial/fisiologia , Células-Tronco Neoplásicas/citologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Metabolismo Energético , Feminino , Humanos , Microscopia Confocal/métodos , Proteínas Mitocondriais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas , Oxirredução
4.
Biochim Biophys Acta Rev Cancer ; 1869(2): 175-188, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29378228

RESUMO

De-regulated cellular energetics is an emerging hallmark of cancer with alterations to glycolysis, oxidative phosphorylation, the pentose phosphate pathway, lipid oxidation and synthesis and amino acid metabolism. Understanding and targeting of metabolic reprogramming in cancers may yield new treatment options, but metabolic heterogeneity and plasticity complicate this strategy. One highly heterogeneous cancer for which current treatments ultimately fail is the deadly brain tumor glioblastoma. Therapeutic resistance, within glioblastoma and other solid tumors, is thought to be linked to subsets of tumor initiating cells, also known as cancer stem cells. Recent profiling of glioblastoma and brain tumor initiating cells reveals changes in metabolism, as compiled here, that may be more broadly applicable. We will summarize the profound role for metabolism in tumor progression and therapeutic resistance and discuss current approaches to target glioma metabolism to improve standard of care.


Assuntos
Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/metabolismo , Metabolismo Energético , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Aminoácidos/metabolismo , Animais , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos , Metabolismo Energético/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Terapia de Alvo Molecular , Invasividade Neoplásica , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
5.
Nucleic Acids Res ; 47(W1): W578-W586, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31114876

RESUMO

BEERE (Biomedical Entity Expansion, Ranking and Explorations) is a new web-based data analysis tool to help biomedical researchers characterize any input list of genes/proteins, biomedical terms or their combinations, i.e. 'biomedical entities', in the context of existing literature. Specifically, BEERE first aims to help users examine the credibility of known entity-to-entity associative or semantic relationships supported by database or literature references from the user input of a gene/term list. Then, it will help users uncover the relative importance of each entity-a gene or a term-within the user input by computing the ranking scores of all entities. At last, it will help users hypothesize new gene functions or genotype-phenotype associations by an interactive visual interface of constructed global entity relationship network. The output from BEERE includes: a list of the original entities matched with known relationships in databases; any expanded entities that may be generated from the analysis; the ranks and ranking scores reported with statistical significance for each entity; and an interactive graphical display of the gene or term network within data provenance annotations that link to external data sources. The web server is free and open to all users with no login requirement and can be accessed at http://discovery.informatics.uab.edu/beere/.


Assuntos
Genes , Proteínas , Software , Mineração de Dados , Bases de Dados Genéticas , Internet , Mapeamento de Interação de Proteínas , PubMed
6.
Stem Cells ; 37(4): 453-462, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629778

RESUMO

Tumorigenic and non-neoplastic tissue injury occurs via the ischemic microenvironment defined by low oxygen, pH, and nutrients due to blood supply malfunction. Ischemic conditions exist within regions of pseudopalisading necrosis, a pathological hallmark of glioblastoma (GBM), the most common primary malignant brain tumor in adults. To recapitulate the physiologic microenvironment found in GBM tumors and tissue injury, we developed an in vitro ischemic model and identified chromodomain helicase DNA-binding protein 7 (CHD7) as a novel ischemia-regulated gene. Point mutations in the CHD7 gene are causal in CHARGE syndrome (a developmental disorder causing coloboma, heart defects, atresia choanae, retardation of growth, and genital and ear anomalies) and interrupt the epigenetic functions of CHD7 in regulating neural stem cell maintenance and development. Using our ischemic system, we observed microenvironment-mediated decreases in CHD7 expression in brain tumor-initiating cells and neural stem cells. Validating our approach, CHD7 was suppressed in the perinecrotic niche of GBM patient and xenograft sections, and an interrogation of patient gene expression datasets determined correlations of low CHD7 with increasing glioma grade and worse patient outcomes. Segregation of GBM by molecular subtype revealed a novel observation that CHD7 expression is elevated in proneural versus mesenchymal GBM. Genetic targeting of CHD7 and subsequent gene ontology analysis of RNA sequencing data indicated angiogenesis as a primary biological function affected by CHD7 expression changes. We validated this finding in tube-formation assays and vessel formation in orthotopic GBM models. Together, our data provide further understanding of molecular responses to ischemia and a novel function of CHD7 in regulating angiogenesis in both neoplastic and non-neoplastic systems. Stem Cells 2019;37:453-462.


Assuntos
DNA Helicases/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Modelos Animais de Doenças , Glioblastoma , Humanos , Camundongos , Transfecção , Microambiente Tumoral
7.
Genes Dev ; 26(11): 1247-62, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661233

RESUMO

Growth factor-mediated proliferation and self-renewal maintain tissue-specific stem cells and are frequently dysregulated in cancers. Platelet-derived growth factor (PDGF) ligands and receptors (PDGFRs) are commonly overexpressed in gliomas and initiate tumors, as proven in genetically engineered models. While PDGFRα alterations inform intertumoral heterogeneity toward a proneural glioblastoma (GBM) subtype, we interrogated the role of PDGFRs in intratumoral GBM heterogeneity. We found that PDGFRα is expressed only in a subset of GBMs, while PDGFRß is more commonly expressed in tumors but is preferentially expressed by self-renewing tumorigenic GBM stem cells (GSCs). Genetic or pharmacological targeting of PDGFRß (but not PDGFRα) attenuated GSC self-renewal, survival, tumor growth, and invasion. PDGFRß inhibition decreased activation of the cancer stem cell signaling node STAT3, while constitutively active STAT3 rescued the loss of GSC self-renewal caused by PDGFRß targeting. In silico survival analysis demonstrated that PDGFRB informed poor prognosis, while PDGFRA was a positive prognostic factor. Our results may explain mixed clinical responses of anti-PDGFR-based approaches and suggest the need for integration of models of cancer as an organ system into development of cancer therapies.


Assuntos
Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Técnicas de Silenciamento de Genes , Glioblastoma/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Transcrição STAT3/metabolismo , Transplante Heterólogo
8.
BMC Bioinformatics ; 20(1): 463, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31500569

RESUMO

BACKGROUND: The Human Protein Atlas (HPA) aims to map human proteins via multiple technologies including imaging, proteomics and transcriptomics. Access of the HPA data is mainly via web-based interface allowing views of individual proteins, which may not be optimal for data analysis of a gene set, or automatic retrieval of original images. RESULTS: HPAanalyze is an R package for retrieving and performing exploratory analysis of data from HPA. HPAanalyze provides functionality for importing data tables and xml files from HPA, exporting and visualizing data, as well as downloading all staining images of interest. The package is free, open source, and available via Bioconductor and GitHub. We provide examples of the use of HPAanalyze to investigate proteins altered in the deadly brain tumor glioblastoma. For example, we confirm Epidermal Growth Factor Receptor elevation and Phosphatase and Tensin Homolog loss and suggest the importance of the GTP Cyclohydrolase I/Tetrahydrobiopterin pathway. Additionally, we provide an interactive website for non-programmers to explore and visualize data without the use of R. CONCLUSIONS: HPAanalyze integrates into the R workflow with the tidyverse framework, and it can be used in combination with Bioconductor packages for easy analysis of HPA data.


Assuntos
Análise de Dados , Armazenamento e Recuperação da Informação , Proteínas de Neoplasias/metabolismo , Software , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Humanos
9.
J Biol Chem ; 293(15): 5659-5667, 2018 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-29475939

RESUMO

Aberrant cell surface glycosylation is prevalent in tumor cells, and there is ample evidence that glycans have functional roles in carcinogenesis. Nonetheless, many molecular details remain unclear. Tumor cells frequently exhibit increased α2-6 sialylation on N-glycans, a modification that is added by the ST6Gal-I sialyltransferase, and emerging evidence suggests that ST6Gal-I-mediated sialylation promotes the survival of tumor cells exposed to various cell stressors. Here we report that ST6Gal-I protects cancer cells from hypoxic stress. It is well known that hypoxia-inducible factor 1α (HIF-1α) is stabilized in hypoxic cells, and, in turn, HIF-1α directs the transcription of genes important for cell survival. To investigate a putative role for ST6Gal-I in the hypoxic response, we examined HIF-1α accumulation in ovarian and pancreatic cancer cells in ST6Gal-I overexpression or knockdown experiments. We found that ST6Gal-I activity augmented HIF-1α accumulation in cells grown in a hypoxic environment or treated with two chemical hypoxia mimetics, deferoxamine and dimethyloxalylglycine. Correspondingly, hypoxic cells with high ST6Gal-I expression had increased mRNA levels of HIF-1α transcriptional targets, including the glucose transporter genes GLUT1 and GLUT3 and the glycolytic enzyme gene PDHK1 Interestingly, high ST6Gal-I-expressing cells also had an increased pool of HIF-1α mRNA, suggesting that ST6Gal-I may influence HIF-1α expression. Finally, cells grown in hypoxia for several weeks displayed enriched ST6Gal-I expression, consistent with a pro-survival function. Taken together, these findings unravel a glycosylation-dependent mechanism that facilitates tumor cell adaptation to a hypoxic milieu.


Assuntos
Antígenos CD/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Pancreáticas/metabolismo , Sialiltransferases/biossíntese , Transdução de Sinais , Hipóxia Tumoral , Antígenos CD/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Sialiltransferases/genética
10.
Glia ; 67(12): 2424-2439, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31400163

RESUMO

Glioblastoma is a malignant brain tumor that portends a poor prognosis. Its resilience, in part, is related to a remarkable capacity for manipulating the microenvironment to promote its growth and survival. Microglia/macrophages are prime targets, being drawn into the tumor and stimulated to produce factors that support tumor growth and evasion from the immune system. Here we show that the RNA regulator, HuR, plays a key role in the tumor-promoting response of microglia/macrophages. Knockout (KO) of HuR led to reduced tumor growth and proliferation associated with prolonged survival in a murine model of glioblastoma. Analysis of tumor composition by flow cytometry showed that tumor-associated macrophages (TAMs) were decreased, more polarized toward an M1-like phenotype, and had reduced PD-L1 expression. There was an overall increase in infiltrating CD4+ cells, including Th1 and cytotoxic effector cells, and a concomitant reduction in tumor-associated polymorphonuclear myeloid-derived suppressor cells. Molecular and cellular analyses of HuR KO TAMs and cultured microglia showed changes in migration, chemoattraction, and chemokine/cytokine profiles that provide potential mechanisms for the altered tumor microenvironment and reduced tumor growth in HuR KO mice. In summary, HuR is a key modulator of pro-glioma responses by microglia/macrophages through the molecular regulation of chemokines, cytokines, and other factors. Our findings underscore the relevance of HuR as a therapeutic target in glioblastoma.


Assuntos
Neoplasias Encefálicas/imunologia , Proteína Semelhante a ELAV 1/deficiência , Deleção de Genes , Glioma/imunologia , Macrófagos/imunologia , Microglia/imunologia , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Proteína Semelhante a ELAV 1/genética , Glioma/genética , Glioma/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA